TY - JOUR A1 - Herzog, Marc A1 - von Reppert, Alexander A1 - Pudell, Jan-Etienne A1 - Henkel, Carsten A1 - Kronseder, Matthias A1 - Back, Christian H. A1 - Maznev, Alexei A. A1 - Bargheer, Matias T1 - Phonon-dominated energy transport in purely metallic heterostructures JF - Advanced functional materials N2 - Ultrafast X-ray diffraction is used to quantify the transport of energy in laser-excited nanoscale gold-nickel (Au-Ni) bilayers. Electron transport and efficient electron-phonon coupling in Ni convert the laser-deposited energy in the conduction electrons within a few picoseconds into a strong non-equilibrium between hot Ni and cold Au phonons at the bilayer interface. Modeling of the subsequent equilibration dynamics within various two-temperature models confirms that for ultrathin Au films, the thermal transport is dominated by phonons instead of conduction electrons because of the weak electron-phonon coupling in Au. KW - heterostructures KW - nanoscale energy transports KW - non-equilibrium KW - thermal KW - transports KW - ultrafast phenomena Y1 - 2022 U6 - https://doi.org/10.1002/adfm.202206179 SN - 1616-301X SN - 1616-3028 VL - 32 IS - 41 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Shayduk, Roman A1 - Hallmann, Jörg A1 - Rodriguez-Fernandez, Angel A1 - Scholz, Markus A1 - Lu, Wei A1 - Bösenberg, Ulrike A1 - Möller, Johannes A1 - Zozulya, Alexey A1 - Jiang, Man A1 - Wegner, Ulrike A1 - Secareanu, Radu-Costin A1 - Palmer, Guido A1 - Emons, Moritz A1 - Lederer, Max A1 - Volkov, Sergey A1 - Lindfors-Vrejoiu, Ionela A1 - Schick, Daniel A1 - Herzog, Marc A1 - Bargheer, Matias A1 - Madsen, Anders T1 - Femtosecond x-ray diffraction study of multi-THz coherent phonons in SrTiO3 JF - Applied physics letters N2 - We report generation of ultra-broadband longitudinal acoustic coherent phonon wavepackets in SrTiO3 (STO) with frequency components extending throughout the first Brillouin zone. The wavepackets are efficiently generated in STO using femtosecond infrared laser excitation of an atomically flat 1.6 nm-thick epitaxial SrRuO3 film. We use femtosecond x-ray diffraction at the European X-Ray Free Electron Laser Facility to study the dispersion and damping of phonon wavepackets. The experimentally determined damping constants for multi-THz frequency phonons compare favorably to the extrapolation of a simple ultrasound damping model over several orders of magnitude. Y1 - 2022 U6 - https://doi.org/10.1063/5.0083256 SN - 0003-6951 SN - 1077-3118 VL - 120 IS - 20 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Mattern, Maximilian A1 - von Reppert, Alexander A1 - Zeuschner, Steffen Peer A1 - Pudell, Jan-Etienne A1 - Kühne, F. A1 - Diesing, Detlef A1 - Herzog, Marc A1 - Bargheer, Matias T1 - Electronic energy transport in nanoscale Au/Fe hetero-structures in the perspective of ultrafast lattice dynamics JF - Applied physics letters N2 - We study the ultrafast electronic transport of energy in a photoexcited nanoscale Au/Fe hetero-structure by modeling the spatiotemporal profile of energy densities that drives transient strain, which we quantify by femtosecond x-ray diffraction. This flow of energy is relevant for intrinsic demagnetization and ultrafast spin transport. We measured lattice strain for different Fe layer thicknesses ranging from few atomic layers to several nanometers and modeled the spatiotemporal flow of energy densities. The combination of a high electron-phonon coupling coefficient and a large Sommerfeld constant in Fe is found to yield electronic transfer of nearly all energy from Au to Fe within the first hundreds of femtoseconds. Y1 - 2022 U6 - https://doi.org/10.1063/5.0080378 SN - 0003-6951 SN - 1077-3118 VL - 120 IS - 9 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Mor, Selene A1 - Herzog, Marc A1 - Noack, Johannes A1 - Katayama, Naoyuki A1 - Nohara, Minoru A1 - Takagi, Hide A1 - Trunschke, Annette A1 - Mizokawa, Takashi A1 - Monney, Claude A1 - Stähler, Julia T1 - Inhibition of the photoinduced structural phase transition in the excitonic insulator Ta2NiSe5 JF - Physical review : B, Condensed matter and materials physics N2 - Femtosecond time-resolved midinfrared reflectivity is used to investigate the electron and phonon dynamics occurring at the direct band gap of the excitonic insulator Ta2NiSe5 below the critical temperature of its structural phase transition. We find that the phonon dynamics show a strong coupling to the excitation of free carriers at the Gamma point of the Brillouin zone. The optical response saturates at a critical excitation fluence F-C = 0.30 +/- 0.08 mJ/cm(2) due to optical absorption saturation. This limits the optical excitation density in Ta2NiSe5 so that the system cannot be pumped sufficiently strongly to undergo the structural change to the high-temperature phase. We thereby demonstrate that Ta2NiSe5 exhibits a blocking mechanism when pumped in the near-infrared regime, preventing a nonthermal structural phase transition. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevB.97.115154 SN - 2469-9950 SN - 2469-9969 VL - 97 IS - 11 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Pudell, Jan-Etienne A1 - Maznev, A. A. A1 - Herzog, Marc A1 - Kronseder, M. A1 - Back, Christian H. A1 - Malinowski, Gregory A1 - von Reppert, Alexander A1 - Bargheer, Matias T1 - Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction JF - Nature Communications N2 - Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond diffraction experiments provide unique experimental access to heat transport over single digit nanometer distances. Here, we investigate the structural response and the energy flow in the ultrathin double-layer system: gold on ferromagnetic nickel. Even though the excitation pulse is incident from the Au side, we observe a very rapid heating of the Ni lattice, whereas the Au lattice initially remains cold. The subsequent heat transfer from Ni to the Au lattice is found to be two orders of magnitude slower than predicted by the conventional heat equation and much slower than electron-phonon coupling times in Au. We present a simplified model calculation highlighting the relevant thermophysical quantities. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-05693-5 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - von Reppert, Alexander A1 - Willig, Lisa A1 - Pudell, Jan-Etienne A1 - Roessle, M. A1 - Leitenberger, Wolfram A1 - Herzog, Marc A1 - Ganss, F. A1 - Hellwig, O. A1 - Bargheer, Matias T1 - Ultrafast laser generated strain in granular and continuous FePt thin films JF - Applied physics letters N2 - We employ ultrafast X-ray diffraction to compare the lattice dynamics of laser-excited continuous and granular FePt films on MgO (100) substrates. Contrary to recent results on free-standing granular films, we observe in both cases a pronounced and long-lasting out-of-plane expansion. We attribute this discrepancy to the in-plane expansion, which is suppressed by symmetry in continuous films. Granular films on substrates are less constrained and already show a reduced out-of-plane contraction. Via the Poisson effect, out-of-plane contractions drive in-plane expansion and vice versa. Consistently, the granular film exhibits a short-lived out-of-plane contraction driven by ultrafast demagnetization which is followed by a reduced and delayed expansion. From the acoustic reflections of the observed strain waves at the film-substrate interface, we extract a 13% reduction of the elastic constants in thin 10 nm FePt films compared to bulk-like samples. (C) 2018 Author(s). Y1 - 2018 U6 - https://doi.org/10.1063/1.5050234 SN - 0003-6951 SN - 1077-3118 VL - 113 IS - 12 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Zeuschner, S. P. A1 - Mattern, M. A1 - Pudell, Jan-Etienne A1 - von Reppert, A. A1 - Rössle, M. A1 - Leitenberger, Wolfram A1 - Schwarzkopf, J. A1 - Boschker, J. E. A1 - Herzog, Marc A1 - Bargheer, Matias T1 - Reciprocal space slicing BT - a time-efficient approach to femtosecond x-ray diffraction JF - Structural Dynamics N2 - An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2. Y1 - 0202 U6 - https://doi.org/10.1063/4.0000040 SN - 2329-7778 VL - 8 PB - AIP Publishing LLC CY - Melville, NY ER - TY - JOUR A1 - Pudell, Jan-Etienne A1 - von Reppert, Alexander A1 - Schick, D. A1 - Zamponi, F. A1 - Rössle, Matthias A1 - Herzog, Marc A1 - Zabel, Hartmut A1 - Bargheer, Matias T1 - Ultrafast negative thermal expansion driven by spin disorder JF - Physical review : B, Condensed matter and materials physics N2 - We measure the transient strain profile in a nanoscale multilayer system composed of yttrium, holmium, and niobium after laser excitation using ultrafast x-ray diffraction. The strain propagation through each layer is determined by transient changes in the material-specific Bragg angles. We experimentally derive the exponentially decreasing stress profile driving the strain wave and show that it closely matches the optical penetration depth. Below the Neel temperature of Ho, the optical excitation triggers negative thermal expansion, which is induced by a quasi-instantaneous contractive stress and a second contractive stress contribution increasing on a 12-ps timescale. These two timescales were recently measured for the spin disordering in Ho [Rettig et al., Phys. Rev. Lett. 116, 257202 (2016)]. As a consequence, we observe an unconventional bipolar strain pulse with an inverted sign traveling through the heterostructure. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevB.99.094304 SN - 2469-9950 SN - 2469-9969 VL - 99 IS - 9 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Pudell, Jan-Etienne A1 - Stete, Felix A1 - Rössle, Matthias A1 - Herzog, Marc A1 - Schmitt, Clemens Nikolaus Zeno A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - Scaling up nanoplasmon catalysis BT - the role of heat dissipation JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Nanoscale heating by optical excitation of plasmonic nanoparticles offers a new perspective of controlling chemical reactions, where heat is not spatially uniform as in conventional macroscopic heating but strong temperature gradients exist around microscopic hot spots. In nanoplasmonics, metal particles act as a nanosource of light, heat, and energetic electrons driven by resonant excitation of their localized surface plasmon resonance. As an example of the coupling reaction of 4-nitrothiophenol into 4,4′-dimercaptoazobenzene, we show that besides the nanoscopic heat distribution at hot spots, the microscopic distribution of heat dictated by the spot size of the light focus also plays a crucial role in the design of plasmonic nanoreactors. Small sizes of laser spots enable high intensities to drive plasmon-assisted catalysis. This facilitates the observation of such reactions by surface-enhanced Raman scattering, but it challenges attempts to scale nanoplasmonic chemistry up to large areas, where the excess heat must be dissipated by one-dimensional heat transport. KW - Gold KW - Raman spectroscopy KW - Silicon KW - Irradiation KW - Lasers Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcc.8b12574 SN - 1932-7447 VL - 123 IS - 14 SP - 9352 EP - 9357 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Pudell, Jan-Etienne A1 - Sander, M. A1 - Bauer, R. A1 - Bargheer, Matias A1 - Herzog, Marc A1 - Gaál, Peter T1 - Full Spatiotemporal Control of Laser-Excited Periodic Surface Deformations JF - Physical review applied N2 - We demonstrate full control of acoustic and thermal periodic deformations at solid surfaces down to subnanosecond time scales and few-micrometer length scales via independent variation of the temporal and spatial phase of two optical transient grating (TG) excitations. For this purpose, we introduce an experimental setup that exerts control of the spatial phase of subsequent time-delayed TG excitations depending on their polarization state. Specific exemplary coherent control cases are discussed theoretically and corresponding experimental data are presented in which time-resolved x-ray reflectivity measures the spatiotemporal surface distortion of nanolayered heterostructures. Finally, we discuss examples where the application of our method may enable the control of functional material properties via tailored spatiotemporal strain fields. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevApplied.12.024036 SN - 2331-7019 VL - 12 IS - 2 PB - American Physical Society CY - College Park ER -