TY - THES A1 - Waha, Katharina T1 - Climate change impacts on agricultural vegetation in sub-Saharan Africa T1 - Auswirkungen von Klimaänderungen auf die landwirtschaftliche Vegetation in Afrika südlich der Sahara N2 - Agriculture is one of the most important human activities providing food and more agricultural goods for seven billion people around the world and is of special importance in sub-Saharan Africa. The majority of people depends on the agricultural sector for their livelihoods and will suffer from negative climate change impacts on agriculture until the middle and end of the 21st century, even more if weak governments, economic crises or violent conflicts endanger the countries’ food security. The impact of temperature increases and changing precipitation patterns on agricultural vegetation motivated this thesis in the first place. Analyzing the potentials of reducing negative climate change impacts by adapting crop management to changing climate is a second objective of the thesis. As a precondition for simulating climate change impacts on agricultural crops with a global crop model first the timing of sowing in the tropics was improved and validated as this is an important factor determining the length and timing of the crops´ development phases, the occurrence of water stress and final crop yield. Crop yields are projected to decline in most regions which is evident from the results of this thesis, but the uncertainties that exist in climate projections and in the efficiency of adaptation options because of political, economical or institutional obstacles have to be considered. The effect of temperature increases and changing precipitation patterns on crop yields can be analyzed separately and varies in space across the continent. Southern Africa is clearly the region most susceptible to climate change, especially to precipitation changes. The Sahel north of 13° N and parts of Eastern Africa with short growing seasons below 120 days and limited wet season precipitation of less than 500 mm are also vulnerable to precipitation changes while in most other part of East and Central Africa, in contrast, the effect of temperature increase on crops overbalances the precipitation effect and is most pronounced in a band stretching from Angola to Ethiopia in the 2060s. The results of this thesis confirm the findings from previous studies on the magnitude of climate change impact on crops in sub-Saharan Africa but beyond that helps to understand the drivers of these changes and the potential of certain management strategies for adaptation in more detail. Crop yield changes depend on the initial growing conditions, on the magnitude of climate change, and on the crop, cropping system and adaptive capacity of African farmers which is only now evident from this comprehensive study for sub-Saharan Africa. Furthermore this study improves the representation of tropical cropping systems in a global crop model and considers the major food crops cultivated in sub-Saharan Africa and climate change impacts throughout the continent. N2 - Landwirtschaft ist eine der wichtigsten menschlichen Aktivitäten, sie stellt Nahrungsmittel und andere landwirtschaftliche Produkte für weltweit 7 Milliarden Menschen zur Verfügung und ist in den Ländern Afrikas südlich der Sahara von besonderer Bedeutung. Die Mehrheit der afrikanischen Bevölkerung bestreitet ihren Lebensunterhalt in der Landwirtschaft und wird von Klimaänderungen stark betroffen sein. Die Doktorarbeit ist durch die Frage motiviert, wie sich von Klimamodellen vorhergesagte Temperaturerhöhungen und sich verändernde Niederschlagsverteilungen auf die landwirtschaftliche Vegetation auswirken werden. Die Forschungsfragen in diesem Kontext beschäftigen sich mit regionalen Unterschieden von Klimaänderungen und ihren Auswirkungen auf die Landwirtschaft und mit möglichen Anpassungsstrategien die mit geringem technischem Aufwand genutzt werden können. In diesem Zusammenhang wird schnell deutlich, dass Daten über die komplexen landwirtschaftlichen Systeme in Afrika südlich der Sahara häufig nur selten vorhanden sind, aus fragwürdigen Quellen stammen oder von schlechter Qualität sind. Die Methoden und Modelle zur Untersuchung der Auswirkungen von Klimaänderungen auf die Landwirtschaft werden zudem ausschließlich in Europa oder Nordamerika entwickelt and häufig in den temperierten Breiten aber seltener in tropischen Gebieten angewendet. Vor allem werden globale, dynamische Vegetationsmodelle in Kombination mit Klimamodellen eingesetzt um Änderungen in der landwirtschaftlichen Produktion auf Grund von Klimaänderungen in der zweiten Hälfte des 21.Jahrhunderts abzuschätzen. Die Ergebnisse der Arbeit zeigen einen mittleren Ertragsrückgang für die wichtigsten landwirtschaftlichen Pflanzen um 6% bis 24% bis 2090 je nach Region, Klimamodell und Anpassungsstrategie. Dieses Ergebnis macht deutlich, dass Landwirte die negativen Folgen von Klimaänderungen abschwächen können, wenn sie die Wahl der Feldfrucht, die Wahl des Anbausystems und den Aussaattermin an geänderte Klimabedingungen anpassen. Die Arbeit stellt methodische Ansätze zur Berechung des Aussaattermins in temperierten und tropischen Gebieten (Kapitel 2) sowie zur Simulation von Mehrfachanbausystemen in den Tropen vor (Kapitel 3). Dabei werden wichtige Parameter für das globale, dynamische Vegetationsmodell LPJmL überprüft und neu berechnet. Es zeigt sich, dass das südliche Afrika und die Sahelregion die am stärksten betroffenen Regionen sind, vor allem aufgrund von Niederschlagsänderungen, weniger aufgrund von Temperaturerhöhungen. In den meisten anderen Teilen, vor allem Zentral- und Ostafrikas bedingen Temperaturerhöhungen Rückgänge der Erträge (Kapitel 4). Diese Arbeit leistet einen wichtigen und umfassenden Beitrag zum Verständnis der Auswirkung von Klimaänderung auf die landwirtschaftliche Vegetation und damit zu einem großen Teil auf die Lebensgrundlage von afrikanischen Landwirten. KW - Klimawandel KW - Anpassung KW - Afrika KW - Pflanzenwachstum KW - Landwirtschaft KW - climate change KW - Africa KW - crop modeling KW - adapation KW - agriculture Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-64717 ER - TY - THES A1 - Wulf, Hendrik T1 - Seasonal precipitation, river discharge, and sediment flux in the western Himalaya T1 - Saisonaler Niederschlag, Wasserabfluss und Sedimentationsfluss im westlichen Himalaya N2 - Rainfall, snow-, and glacial melt throughout the Himalaya control river discharge, which is vital for maintaining agriculture, drinking water and hydropower generation. However, the spatiotemporal contribution of these discharge components to Himalayan rivers is not well understood, mainly because of the scarcity of ground-based observations. Consequently, there is also little known about the triggers and sources of peak sediment flux events, which account for extensive hydropower reservoir filling and turbine abrasion. We therefore lack basic information on the distribution of water resources and controls of erosion processes. In this thesis, I employ various methods to assess and quantify general characteristics of and links between precipitation, river discharge, and sediment flux in the Sutlej Valley. First, I analyze daily precipitation data (1998-2007) from 80 weather stations in the western Himalaya, to decipher the distribution of rain- and snowfall. Rainfall magnitude frequency analyses indicate that 40% of the summer rainfall budget is attributed to monsoonal rainstorms, which show higher variability in the orogenic interior than in frontal regions. Combined analysis of rainstorms and sediment flux data of a major Sutlej River tributary indicate that monsoonal rainfall has a first order control on erosion processes in the orogenic interior, despite the dominance of snowfall in this region. Second, I examine the contribution of rainfall, snow and glacial melt to river discharge in the Sutlej Valley (s55,000 km2), based on a distributed hydrological model, which covers the period 2000-2008. To achieve high spatial and daily resolution despite limited ground-based observations the hydrological model is forced by daily remote sensing data, which I adjusted and calibrated with ground station data. The calibration shows that the Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall product systematically overestimates rainfall in semi-arid and arid regions, increasing with aridity. The model results indicate that snowmelt-derived discharge (74%) is most important during the pre-monsoon season (April to June) whereas rainfall (56%) and glacial melt (17%) dominate the monsoon season (July-September). Therefore, climate change most likely causes a reduction in river discharge during the pre-monsoon season, which especially affects the orogenic interior. Third, I investigate the controls on suspended sediment flux in different parts of the Sutlej catchments, based on daily gauging data from the past decade. In conjunction with meteorological data, earthquake records, and rock strength measurements I find that rainstorms are the most frequent trigger of high-discharge events with peaks in suspended sediment concentrations (SSC) that account for the bulk of the suspended sediment flux. The suspended sediment flux increases downstream, mainly due to increases in runoff. Pronounced erosion along the Himalayan Front occurs throughout the monsoon season, whereas efficient erosion of the orogenic interior is confined to single extreme events. The results of this thesis highlight the importance of snow and glacially derived melt waters in the western Himalaya, where extensive regions receive only limited amounts of monsoonal rainfall. These regions are therefore particularly susceptible to global warming with major implications on the hydrological cycle. However, the sediment discharge data show that infrequent monsoonal rainstorms that pass the orographic barrier of the Higher Himalaya are still the primary trigger of the highest-impact erosion events, despite being subordinate to snow and glacially–derived discharge. These findings may help to predict peak sediment flux events and could underpin the strategic development of preventative measures for hydropower infrastructures. N2 - Regen, Schnee- und Gletscherschmelze speisen die Flüsse des Himalajas, die eine große Bedeutung für die Landwirtschaft, Trinkwasserversorgung und Wasserkraftnutzung in Südasien aufweisen. Welchen Anteil die einzelnen Abflusskomponenten am Gesamtabfluss in Raum und Zeit besitzen, ist jedoch kaum quantifiziert, da es in der entlegenen Region an Bodenmessstationen mangelt. Aus diesem Grund ist auch wenig über die Auslöser und Herkunftsgebiete von hohen Sedimentaustragsereignissen bekannt, die im erheblichen Maße dazu beitragen, dass die Kapazität vonWasserkraftreservoiren abnimmt undWasserkraftturbinen abradieren. Daher fehlen bisher grundlegende Informationen zur räumlichen Verteilung von Wasserressourcen und zu den Ursachen von Erosionsprozessen. In dieser Arbeit benutze ich verschiedene Methoden um die Eigenschaften von und die Beziehungen zwischen Niederschlag, Abflussmenge und Sedimentaustrag im Sutlej-Tal zu untersuchen. In einer ersten Studie analysiere ich Tagesniederschläge (1998-2007) von 80 Wetterstationen aus dem westlichen Himalaja, um die räumliche Verteilung von Regen- und Schneeniederschlägen zu charakterisieren. Die weitere Analyse der Magnituden-Häufigkeitsverteilung von Regenfällen zeigt, dass 40% der sommerlichen Niederschläge auf monsunale Starkregenereignisse zurückgehen, die eine höhere Variabilität im Gebirgsinneren aufweisen als an der Gebirgsfront. Die Kombination von Niederschlagsdaten mit Sedimentaustragsdaten für einen der größten Zuflüsse des Sutlejs zeigt, dass monsunaler Niederschlag der primäre Auslöser von Erosionsprozessen im Gebirgsinneren ist, ungeachtet größerer Abflussmengen durch Schnee- und Gletscherschmelze. In einer zweiten Studie untersuche ich den Beitrag von Regen, Schnee- und Gletscherschmelze zur Abflussmenge im Sutlej-Tal (s55.000 km2) mit Hilfe eines hydrologischen Modells für den Jahreszeitraum 2000-2008. Um trotz der begrenzten Bodenmessungen eine hohe räumliche und zeitliche Auflösung zu erzielen, basiert das Modell auf täglichen Fernerkundungsdaten, die ich mit allen verfügbaren Bodenstationsdaten kalibriert und an diese angepasst habe. Die Kalibrierung zeigt, dass das Regenniederschlagsprodukt 3B42 der „Tropical Rainfall Measuring Mission“ (TRMM) den Bodenniederschlag in den semi-ariden bis ariden Gebirgsregionen mit zunehmender Trockenheit systematisch überschätzt. Die Modellierungsergebnisse verdeutlichen, dass die Schneeschmelze den bedeutendsten Beitrag zur Abflussmenge (74 %) zwischen April und Juni aufbringt, während Regen (56%) und Gletscherschmelze (17%) die Monsunsaison (Juli-September) prägen. Daher ist anzunehmen, dass der Klimawandel zu einer Verringerung der Abflussmenge zwischen April und Juni führen wird, was sich besonders auf das Gebirgsinnere auswirkt. In einer dritten Studie untersuche ich mit Hilfe von täglichen Messdaten der letzten Dekade die Ursachen und Eigenschaften des Sedimentaustrags in verschiedenen Bereichen des Sutlej-Einzugsgebietes. Auf der Grundlage von meteorologischen Daten, Erdbebenaufzeichnungen und Gesteinsfestigkeitsmessungen identifiziere ich Starkregenereignisse als häufigste Ursache für extreme Erosionsereignisse, die einen Großteil des gesamten Sedimentaustrags ausmachen. Großräumig betrachtet nimmt der Sedimentaustrag flussabwärts zu, was hauptsächlich auf den Anstieg der Abflussmenge zurückzuführen ist. Zur Monsunzeit treten Erosionsprozesse entlang der Himalajafront besonders häufig auf, während im Gebirgsinneren die Erosion auf einzelne Extremereignisse beschränkt ist. Die Ergebnisse dieser Arbeit untersteichen die Bedeutung von Schnee- und Gletscherschmelze im westlichen Himalaja, in dem große Gebiete nur vereinzelt von monsunalen Niederschlägen erreicht werden. Diese Gebiete sind daher besonders anfällig für den Klimawandel mit weitreichenden Konsequenzen für den Wasserhaushalt in der Region. Die Analyse von Sedimentaustragsdaten zeigt jedoch, dass vereinzelte monsunale Regenstürme, welche die topographische Barriere des Himalaja überqueren, die primäre Ursache von extremen Erosionsereignissen sind, trotz der größeren Abflussmengen von Schnee- und Gletscherschmelze im Gebirgsinneren. Diese Ergebnisse können dazu beitragen, große Erosionsereignisse vorherzusagen und vorbeugende Maßnahmen zum Schutz von Wasserkraftanlagen zu entwickeln. KW - Klimawandel KW - Erosion KW - Monsun KW - Regensturm KW - Suspendsionsfracht KW - climate change KW - erosion KW - monsoon KW - rainstorm KW - suspended sediment Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57905 ER - TY - THES A1 - Zurell, Damaris T1 - Integrating dynamic and statistical modelling approaches in order to improve predictions for scenarios of environmental change T1 - Integration dynamischer und statistischer Modellansätze zur Verbesserung von Arealvorhersagen für Szenarien globalen Wandels N2 - Species respond to environmental change by dynamically adjusting their geographical ranges. Robust predictions of these changes are prerequisites to inform dynamic and sustainable conservation strategies. Correlative species distribution models (SDMs) relate species’ occurrence records to prevailing environmental factors to describe the environmental niche. They have been widely applied in global change context as they have comparably low data requirements and allow for rapid assessments of potential future species’ distributions. However, due to their static nature, transient responses to environmental change are essentially ignored in SDMs. Furthermore, neither dispersal nor demographic processes and biotic interactions are explicitly incorporated. Therefore, it has often been suggested to link statistical and mechanistic modelling approaches in order to make more realistic predictions of species’ distributions for scenarios of environmental change. In this thesis, I present two different ways of such linkage. (i) Mechanistic modelling can act as virtual playground for testing statistical models and allows extensive exploration of specific questions. I promote this ‘virtual ecologist’ approach as a powerful evaluation framework for testing sampling protocols, analyses and modelling tools. Also, I employ such an approach to systematically assess the effects of transient dynamics and ecological properties and processes on the prediction accuracy of SDMs for climate change projections. That way, relevant mechanisms are identified that shape the species’ response to altered environmental conditions and which should hence be considered when trying to project species’ distribution through time. (ii) I supplement SDM projections of potential future habitat for black grouse in Switzerland with an individual-based population model. By explicitly considering complex interactions between habitat availability and demographic processes, this allows for a more direct assessment of expected population response to environmental change and associated extinction risks. However, predictions were highly variable across simulations emphasising the need for principal evaluation tools like sensitivity analysis to assess uncertainty and robustness in dynamic range predictions. Furthermore, I identify data coverage of the environmental niche as a likely cause for contrasted range predictions between SDM algorithms. SDMs may fail to make reliable predictions for truncated and edge niches, meaning that portions of the niche are not represented in the data or niche edges coincide with data limits. Overall, my thesis contributes to an improved understanding of uncertainty factors in predictions of range dynamics and presents ways how to deal with these. Finally I provide preliminary guidelines for predictive modelling of dynamic species’ response to environmental change, identify key challenges for future research and discuss emerging developments. N2 - Das Vorkommen von Arten wird zunehmend bedroht durch Klima- und Landnutzungswandel. Robuste Vorhersagen der damit verbundenen Arealveränderungen sind ausschlaggebend für die Erarbeitung dynamischer und nachhaltiger Naturschutzstrategien. Habitateignungsmodelle erstellen statistische Zusammenhänge zwischen dem Vorkommen einer Art und relevanten Umweltvariablen und erlauben zügige Einschätzungen potentieller Arealveränderungen. Dabei werden jedoch transiente Dynamiken weitgehend ignoriert sowie demographische Prozesse und biotische Interaktionen. Daher wurden Vorschläge laut, diese statistischen Modelle mit mechanistischeren Ansätzen zu koppeln. In der vorliegenden Arbeit zeige ich zwei verschiedene Möglichkeiten solcher Kopplung auf. (i) Ich beschreibe den sogenannten ‚Virtuellen Ökologen’-Ansatz als mächtiges Validierungswerkzeug, in dem mechanistische Modelle virtuelle Testflächen bieten zur Erforschung verschiedener Probenahmedesigns oder statistischer Methoden sowie spezifischer Fragestellungen. Auch verwende ich diesen Ansatz, um systematisch zu untersuchen wie sich transiente Dynamiken sowie Arteigenschaften und ökologische Prozesse auf die Vorhersagegüte von Habitateignungsmodellen auswirken. So kann ich entscheidende Prozesse identifizieren welche in zukünftigen Modellen Berücksichtigung finden sollten. (ii) Darauf aufbauend koppele ich Vorhersagen von Habitateignungsmodellen mit einem individuen-basierten Populationsmodell, um die Entwicklung des Schweizer Birkhuhnbestandes unter Klimawandel vorherzusagen. Durch die explizite Berücksichtigung der Wechselwirkungen zwischen Habitat und demographischer Prozesse lassen sich direktere Aussagen über Populationsentwicklung und damit verbundener Extinktionsrisiken treffen. Allerdings führen verschiedene Simulationen auch zu hoher Variabilität zwischen Vorhersagen, was die Bedeutung von Sensitivitätsanalysen unterstreicht, um Unsicherheiten und Robustheit von Vorhersagen einzuschätzen. Außerdem identifiziere ich Restriktionen in der Datenabdeckung des Umweltraumes als möglichen Grund für kontrastierende Vorhersagen verschiedener Habitateignungsmodelle. Wenn die Nische einer Art nicht vollständig durch Daten beschrieben ist, kann dies zu unrealistischen Vorhersagen der Art-Habitat-Beziehung führen. Insgesamt trägt meine Arbeit erheblich bei zu einem besseren Verständnis der Auswirkung verschiedenster Unsicherheitsfaktoren auf Vorhersagen von Arealveränderungen und zeigt Wege auf, mit diesen umzugehen. Abschließend erstelle ich einen vorläufigen Leitfaden für Vorhersagemodelle und identifiziere Kernpunkte für weitere Forschung auf diesem Gebiet. KW - species distribution models KW - dynamic population models KW - climate change KW - prediction KW - uncertainty KW - Habitatmodelle KW - dynamische Populationsmodelle KW - Klimawandel KW - Vorhersage KW - Unsicherheit Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-56845 ER - TY - THES A1 - Natkhin, Marco T1 - Modellgestützte Analyse der Einflüsse von Veränderungen der Waldwirtschaft und des Klimas auf den Wasserhaushalt grundwasserabhängiger Landschaftselemente T1 - Model-based Analysis of the Impact of Changing Climate and Forest Cultivation on the Water Balance of Groundwater-Dependent Landscape Elements N2 - In den letzten drei Jahrzehnten wurden in einigen Seen und Feuchtgebieten in bewaldeten Einzugsgebieten Nordost-Brandenburgs sinkende Wasserstände beobachtet. In diesen Gebieten bestimmt die Grundwasserneubildung im Einzugsgebiet maßgeblich das Wasserdargebot der Seen und Feuchtgebiete, die deshalb hier als grundwasserabhängige Landschaftselemente bezeichnet werden. Somit weisen die sinkenden Wasserstände auf einen Rückgang der wegen des geringen Niederschlagsdargebotes ohnehin schon geringen Grundwasserneubildung hin. Die Höhe der Grundwasserneubildung ist neben den hydroklimatischen Randbedingungen auch von der Landnutzung abhängig. Veränderungen in der Waldvegetation und der hydroklimatischen Randbedingungen bewirken Änderungen der Grundwasserneubildung und beeinflussen somit auch den Wasserhaushalt der Seen und Feuchtgebiete. Aktuell wird die Waldvegetation durch Kiefernmonokulturen dominiert, mit im Vergleich zu anderen Baumarten höherer Evapotranspiration. Entwicklungen in der Forstwirtschaft streben die Verringerung von Kiefernmonokulturen an. Diese sollen langfristig auf geeigneten Standorten durch Laubmischwälder ersetzt werden. Dadurch lassen sich eine geringere Evapotranspiration und damit eine höhere Grundwasserneubildung erreichen. In der vorliegenden Arbeit werden am Beispiel des Redernswalder Sees und des Briesensees die Ursachen der beobachteten sinkenden Wasserstände analysiert. Ihre Wasserstände nahmen in den letzten 25 Jahren um mehr als 3 Meter ab. Weiterhin wird untersucht, wie die erwarteten Klimaänderungen und Veränderungen in der Waldbewirtschaftung die zukünftige Grundwasserneubildung und den Wasserhaushalt von Seen beeinflussen können. Die Entwicklung der Grundwasserneubildung im Untersuchungsgebiet wurde mit dem Wasserhaushaltsmodell WaSiM-ETH simuliert. Die Analyse der Wechselwirkungen der Seen mit dem regionalen quartären Grundwasserleitersystem erfolgte mit dem 3D-Grundwassermodell FEFLOW. Mögliche zukünftige Veränderungen der Grundwasserneubildung und der Seewasserstände durch Klimaänderungen und Waldumbau wurden mit Szenarienrechnungen bis zum Jahr 2100 analysiert. Die modellgestützte Analyse zeigte, dass die beobachteten abnehmenden Wasserstände zu etwa gleichen Anteilen durch Veränderungen der hydroklimatischen Randbedingungen sowie durch Veränderungen in der Waldvegetation und damit abnehmenden Grundwasserneubildungsraten zu erklären sind. Die zukünftigen Entwicklungen der Grundwasserneubildung und der Wasserstände sind geprägt von sich ändernden hydroklimatischen Randbedingungen und einem sukzessiven Wandel der Kiefernbestände zu Laubwäldern. Der Waldumbau hat positive Wirkungen auf die Grundwasserneubildung und damit auf die Wasserstände. Damit können die Einflüsse des eingesetzten REMO-A1B-Klimaszenarios zum Ende des Modellzeitraumes durch den Waldumbau nicht kompensiert werden, das Sinken des Wasserstandes wird jedoch wesentlich reduziert. Bei dem moderateren REMO-B1-Klimaszenario werden die Wasserstände des Jahres 2008 durch den Waldumbau bis zum Jahr 2100 überschritten. N2 - Declining water levels have been observed in some lakes and wetlands in forested catchments in North-East Brandenburg (Germany). Groundwater recharge mainly controls the supply of water available for lakes and wetlands, therefore determining them as groundwater-dependent landscape elements. Thus, the declining water levels indicate a reduction of groundwater recharge. Aspects such as climate change and different forest management practices have been considered as main factors affecting the regional groundwater regime. Currently, forest landscapes in North-East Brandenburg are dominated by pine monoculture. Depending on the climate conditions, groundwater recharge can be significantly lower under pine than under broad-leaved species like beech or oak. Regional forest administration is currently planning to expand the share of broad-leaved trees among mixed deciduous forest in the future. For this study, two lakes were chosen, the Redernswalder See and the Briesensee at Poratz. Water gauge measurements over the last 25 years showed a decline in lake water level by more than 3 m. To identify and quantify the share of changes in both, climate and forest management, the principal processes were evaluated using field measurements and water balance modelling. In the following step, alternative climate change and forestry scenarios were analysed to discover their impacts on the regional distribution of groundwater recharge. At first, the causes of the declining observed water levels were analysed. For this purpose, the physically based and fully distributed water balance model WaSiM-ETH was used to simulate groundwater recharge in the catchment and evaporation from the lake surfaces from 1958 to 2007. To analyse the geohydrological conditions, a FEFLOW 3D groundwater model was built up for the underlying Quaternary aquifer system. Possible development directions of the water balance were simulated under the influence of climate change and forest conversion until 2100. The model based analysis showed that the observed declining water levels are caused by both changes in climatic boundary conditions and in forest vegetation (age distribution and understorey) followed by decreasing groundwater recharge with an equal magnitude. The future developments of groundwater recharge and water levels are governed by changes in climatic boundary conditions and a transition from pine monoculture to broad-leaved trees. Forest conversion will show a positive effect on groundwater recharge and likely increase the water levels of lakes and wetlands. The forest conversation can not completely compensate the impact of climate change to the lake water levels, but the decrease can be significantly limited. KW - Seewasserhaushalt KW - Waldumbau KW - Grundwasserneubildung KW - Nordostdeutsches Tiefland KW - Klimaänderungen KW - lakes water balance KW - forest conversion KW - groundwater recharge KW - North-East German Plain KW - climate change Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50627 ER - TY - THES A1 - Robinson, Alexander T1 - Modeling the Greenland Ice Sheet response to climate change in the past and future T1 - Modellierung der Reaktion des Grönländischen Inlandeises auf den vergangenen und zukünftigen Klimawandel N2 - The Greenland Ice Sheet (GIS) contains enough water volume to raise global sea level by over 7 meters. It is a relic of past glacial climates that could be strongly affected by a warming world. Several studies have been performed to investigate the sensitivity of the ice sheet to changes in climate, but large uncertainties in its long-term response still exist. In this thesis, a new approach has been developed and applied to modeling the GIS response to climate change. The advantages compared to previous approaches are (i) that it can be applied over a wide range of climatic scenarios (both in the deep past and the future), (ii) that it includes the relevant feedback processes between the climate and the ice sheet and (iii) that it is highly computationally efficient, allowing simulations over very long timescales. The new regional energy-moisture balance model (REMBO) has been developed to model the climate and surface mass balance over Greenland and it represents an improvement compared to conventional approaches in modeling present-day conditions. Furthermore, the evolution of the GIS has been simulated over the last glacial cycle using an ensemble of model versions. The model performance has been validated against field observations of the present-day climate and surface mass balance, as well as paleo information from ice cores. The GIS contribution to sea level rise during the last interglacial is estimated to be between 0.5-4.1 m, consistent with previous estimates. The ensemble of model versions has been constrained to those that are consistent with the data, and a range of valid parameter values has been defined, allowing quantification of the uncertainty and sensitivity of the modeling approach. Using the constrained model ensemble, the sensitivity of the GIS to long-term climate change was investigated. It was found that the GIS exhibits hysteresis behavior (i.e., it is multi-stable under certain conditions), and that a temperature threshold exists above which the ice sheet transitions to an essentially ice-free state. The threshold in the global temperature is estimated to be in the range of 1.3-2.3°C above preindustrial conditions, significantly lower than previously believed. The timescale of total melt scales non-linearly with the overshoot above the temperature threshold, such that a 2°C anomaly causes the ice sheet to melt in ca. 50,000 years, but an anomaly of 6°C will melt the ice sheet in less than 4,000 years. The meltback of the ice sheet was found to become irreversible after a fraction of the ice sheet is already lost – but this level of irreversibility also depends on the temperature anomaly. N2 - Das grönländische Inlandeis (GIS) besteht aus einem Wasservolumen das ausreicht, um den globalen Meeresspiegel um 7 Meter ansteigen zu lassen. Es ist ein Relikt der vergangenen Eiszeit, das in einer zunehmend wärmer werdenden Welt stark in Mitleidenschaft gezogen werden könnte. In der vorliegenden Dissertation ist ein neues Verfahren zur Modellierung des Antwortverhaltens des Inlandeises auf Klimaänderungen entwickelt und angewendet worden. Die Vorteile des neuen Verfahrens im Vergleich zu den bisherigen Verfahren sind, (i) dass es über einen groen Bereich von Klimaszenarien (sowohl für die ferne Vergangenheit als auch für die Zukunft) anwendbar ist, (ii) dass es die wesentlichen Rückkopplungsprozesse zwischen Klima und Inlandeis enthält und (iii) dass es wegen seiner guten Rechenzeiteffizienz Simulationen über sehr lange Zeitskalen erlaubt. Das neue Modell (REMBO) ist für die Modellierung des Klimas und der Massenbilanz an der grönländischen Oberfläche entwickelt worden und stellt ein verbessertes Verfahren im Vergleich zu den bisherigen dar. Die Entwicklung von GIS über den letzten glazialen Zyklus ist mittels eines Ensembles von verschiedenen Modellversionen simuliert worden. Anschließend ist die Tauglichkeit der Modellversionen durch Vergleich mit Beobachtungsdaten des gegenwärtigen Klimas und der Oberflächenmassenbilanz, sowie mit paleoklimatischen Rekonstruktionen von Eisbohrkernen verifiziert worden. Der Anteil von GIS am Meeresspiegelanstieg während des letzten Interglazials ist im Bereich von 0.5 bis 4.1 m berechnet worden, was konsistent mit bisherigen Schätzungen ist. Von den Ensemblesimulationen sind diejenigen ausgewählt worden, deren Ergebnisse gut mit den Daten übereinstimmen. Durch die Auswahl von geeigneten Modellversionen sind gleichzeitig die Unsicherheiten der Parameterwerte begrenzt worden, so dass sich nun mit dem neuen Verfahren die Sensitivität von GIS auf Klimaänderungen bestimmen lässt. Mit den ausgewählten Modellversionen ist die Sensitivität von GIS auf langfristige Klimaänderungen untersucht worden. Es zeigt sich, dass das GIS ein Hystereseverhalten besitzt (d.h., eine Multistabilität für gewisse Klimazustände) und dass ein Temperaturschwellwert existiert. Bei Überschreiten des Schwellwertes bleibt das GIS nicht erhalten und wird langsam eisfrei werden. Der Temperaturschwellwert der globalen Mitteltemperatur relativ zur vorindustriellen Mitteltemperatur ist im Bereich 1.3-2.3°C ermittelt worden und liegt damit deutlich niedriger als bisher angenommen. Die Zeitdauer bis zum völligen Abschmelzen zeigt ein nichtlineares Verhalten hinsichtlich einer Erwärmung über den ermittelten Schwellwert. Eine Erwärmung von 2°C relativ zur vorindustriellen Zeit führt zu einem Abschmelzen nach 50.000 Jahren, aber eine Erwärmung um 6°C lässt das Inlandeis bereits nach 4.000 Jahren abschmelzen. Ein weiteres Ergebnis ist, dass der Abschmelzvorgang irreversibel werden kann, nachdem ein gewisser Anteil des Inlandeises abgeschmolzen ist – jedoch ist die Irreversibilität eines Abschmelzvorganges auch von der Temperaturanomalie abhängig. KW - Grönland KW - Inlandeis KW - Klimawandel KW - Stabilität KW - Hysterese KW - Greenland KW - ice sheet KW - climate change KW - stability KW - hysteresis Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50430 ER - TY - THES A1 - Huber, Veronika Emilie Charlotte T1 - Climate impact on phytoplankton blooms in shallow lakes T1 - Der Einfluss des Klimas auf Algenblüten in Flachseen N2 - Lake ecosystems across the globe have responded to climate warming of recent decades. However, correctly attributing observed changes to altered climatic conditions is complicated by multiple anthropogenic influences on lakes. This thesis contributes to a better understanding of climate impacts on freshwater phytoplankton, which forms the basis of the food chain and decisively influences water quality. The analyses were, for the most part, based on a long-term data set of physical, chemical and biological variables of a shallow, polymictic lake in north-eastern Germany (Müggelsee), which was subject to a simultaneous change in climate and trophic state during the past three decades. Data analysis included constructing a dynamic simulation model, implementing a genetic algorithm to parameterize models, and applying statistical techniques of classification tree and time-series analysis. Model results indicated that climatic factors and trophic state interactively determine the timing of the phytoplankton spring bloom (phenology) in shallow lakes. Under equally mild spring conditions, the phytoplankton spring bloom collapsed earlier under high than under low nutrient availability, due to a switch from a bottom-up driven to a top-down driven collapse. A novel approach to model phenology proved useful to assess the timings of population peaks in an artificially forced zooplankton-phytoplankton system. Mimicking climate warming by lengthening the growing period advanced algal blooms and consequently also peaks in zooplankton abundance. Investigating the reasons for the contrasting development of cyanobacteria during two recent summer heat wave events revealed that anomalously hot weather did not always, as often hypothesized, promote cyanobacteria in the nutrient-rich lake studied. The seasonal timing and duration of heat waves determined whether critical thresholds of thermal stratification, decisive for cyanobacterial bloom formation, were crossed. In addition, the temporal patterns of heat wave events influenced the summer abundance of some zooplankton species, which as predators may serve as a buffer by suppressing phytoplankton bloom formation. This thesis adds to the growing body of evidence that lake ecosystems have strongly responded to climatic changes of recent decades. It reaches beyond many previous studies of climate impacts on lakes by focusing on underlying mechanisms and explicitly considering multiple environmental changes. Key findings show that climate impacts are more severe in nutrient-rich than in nutrient-poor lakes. Hence, to develop lake management plans for the future, limnologists need to seek a comprehensive, mechanistic understanding of overlapping effects of the multi-faceted human footprint on aquatic ecosystems. N2 - Weltweit haben Seeökosysteme auf den Klimawandel der letzten Jahrzehnte reagiert. Beobachtete Veränderungen eindeutig dem Klimawandel zuzuordnen, wird jedoch häufig dadurch erschwert, dass Seen gleichzeitig vielfachen anthropogenen Einflüssen ausgesetzt sind. Diese Arbeit trägt zu einem besseren Verständnis des Klimaeinflusses auf Algen bei, die am Anfang der Nahrungskette stehen und maßgeblich die Wasserqualität eines Sees beeinflussen können. Zum größten Teil stützt sich die Arbeit auf eine dreißigjährige Datenreihe eines unregelmäßig geschichteten Flachsees im Nordosten von Deutschland (Müggelsee), in dem sowohl steigende Wassertemperaturen als auch sinkende Nährstoffeinträge zu verzeichnen waren. Bei der Datenanalyse wurde ein neu erstelltes dynamisches Simulationsmodell, genetische Algorithmen zur Parametrisierung von Modellen, und statistische Methoden der Klassifizierung und Zeitreihenanalyse genutzt. Ergebnisse dieser Arbeit zeigen, dass nicht nur klimatische Faktoren sondern auch die Nährstoffverfügbarkeit im See den Zeitpunkt der Algenfrühjahrsblüte (Phänologie) beeinflussen. Durch eine Veränderung der Mechanismen, die zum Kollaps der Blüte führen, trat diese trotz ähnlich milder Winterbedingungen bei hoher Nährstoffverfügbarkeit früher auf als bei niedriger. Ein neuentwickelter Ansatz zur Modellierung von Phänologie erwies sich als geeignet, um vorherzusagen, wann Algen und ihre Räuber in einem künstlich periodisch angetriebenen Laborsystem ihre Populationshöhepunkte erreichten. Eine Verlängerung der Wachstumsperiode führte dazu, dass diese früher auftraten. Die Untersuchung, warum sich Blaualgen im betrachteten See während jüngster Hitzewellenereignisse überraschend unterschiedlich entwickelt hatten, ergab, dass ungewöhnlich warmes Wetter nicht wie häufig vermutet generell förderlich für ihre Entwicklung ist. Der Zeitpunkt und die Dauer der Hitzewellen waren entscheidend dafür, ob für Blaualgen kritische Schwellenwerte der thermischen Schichtung im See überschritten wurden. Zudem zeigte sich, dass saisonale Erwärmungsmuster einen bedeutenden Einfluss auf Räuber nahmen, die das Auftreten von Algenblüten verhindern können. Diese Arbeit reiht sich in eine wachsende Anzahl von Studien ein, die zeigen, dass Seeökosysteme bereits stark auf die Klimaveränderungen der letzen Jahrzehnte reagiert haben. Mit ihrem Fokus auf Mechanismen und der expliziten Berücksichtigung simultaner anthropogener Einflüsse geht diese Arbeit gleichzeitig über viele bisherige Studien hinaus, die sich auf reine Beobachtung und die Betrachtung klimatischer Faktoren beschränkten. Kernergebnisse deuten daraufhin, dass Klimafolgen in nährstoffreichen Seen stärker ausfallen als in nährstoffarmen Seen. Nur mit einem umfassenden, mechanistischen Verständnis des vielfältigen anthropogenen Einflusses wird eine hohe Wasserqualität in Seen auch in Zukunft aufrechtzuerhalten sein. KW - Klimawandel KW - Gewässer KW - Phytoplankton KW - Phänologie KW - Modellierung KW - climate change KW - freshwater KW - phytoplankton KW - phenology KW - modelling Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-42346 ER - TY - THES A1 - Fürstenau, Cornelia T1 - The impact of silvicultural strategies and climate change on carbon sequestration and other forest ecosystem functions T1 - Der Einfluss von Waldbewirtschaftungsstrategien und Klimawandel auf die Kohlenstoffspeicherung und andere Waldfunktionen N2 - Forests are a key resource serving a multitude of functions such as providing income to forest owners, supplying industries with timber, protecting water resources, and maintaining biodiversity. Recently much attention has been given to the role of forests in the global carbon cycle and their management for increased carbon sequestration as a possible mitigation option against climate change. Furthermore, the use of harvested wood can contribute to the reduction of atmospheric carbon through (i) carbon sequestration in wood products, (ii) the substitution of non-wood products with wood products, and (iii) through the use of wood as a biofuel to replace fossil fuels. Forest resource managers are challenged by the task to balance these multiple while simultaneously meeting economic requirements and taking into consideration the demands of stakeholder groups. Additionally, risks and uncertainties with regard to uncontrollable external variables such as climate have to be considered in the decision making process. In this study a scientific stakeholder dialogue with forest-related stakeholder groups in the Federal State of Brandenburg was accomplished. The main results of this dialogue were the definition of major forest functions (carbon sequestration, groundwater recharge, biodiversity, and timber production) and priority setting among them by the stakeholders using the pair-wise comparison technique. The impact of different forest management strategies and climate change scenarios on the main functions of forest ecosystems were evaluated at the Kleinsee management unit in south-east Brandenburg. Forest management strategies were simulated over 100 years using the forest growth model 4C and a wood product model (WPM). A current climate scenario and two climate change scenarios based on global circulation models (GCMs) HadCM2 and ECHAM4 were applied. The climate change scenario positively influenced stand productivity, carbon sequestration, and income. The impact on the other forest functions was small. Furthermore, the overall utility of forest management strategies were compared under the priority settings of stakeholders by a multi-criteria analysis (MCA) method. Significant differences in priority setting and the choice of an adequate management strategy were found for the environmentalists on one side and the more economy-oriented forest managers of public and private owned forests on the other side. From an ecological perspective, a conservation strategy would be preferable under all climate scenarios, but the business as usual management would also fit the expectations under the current climate. In contrast, a forest manager in public-owned forests or a private forest owner would prefer a management strategy with an intermediate thinning intensity and a high share of pine stands to enhance income from timber production while maintaining the other forest functions. The analysis served as an example for the combined application of simulation tools and a MCA method for the evaluation of management strategies under multi-purpose and multi-user settings with changing climatic conditions. Another focus was set on quantifying the overall effect of forest management on carbon sequestration in the forest sector and the wood industry sector plus substitution effects. To achieve this objective, the carbon emission reduction potential of material and energy substitution (Smat and Sen) was estimated based on a literature review. On average, for each tonne of dry wood used in a wood product substituting a non-wood product, 0.71 fewer tonnes of fossil carbon are emitted into to the atmosphere. Based on Smat and Sen, the calculation of the carbon emission reduction through substitution was implemented in the WPM. Carbon sequestration and substitution effects of management strategies were simulated at three local scales using the WPM and the forest growth models 4C (management unit level) or EFISCEN (federal state of Brandenburg and Germany). An investigation was conducted on the influence of uncertainties in the initialisation of the WPM, Smat, and basic conditions of the wood product sector on carbon sequestration. Results showed that carbon sequestration in the wood industry sector plus substitution effects exceeded sequestration in the forest sector. In contrast to the carbon pools in the forest sector, which acted as sink or source, the substitution effects continually reduced carbon emission as long as forests are managed and timber is harvested. The main climate protection function was investigated for energy substitution which accounted for about half of the total carbon sequestration, followed by carbon storage in landfills. In Germany, the absolute annual carbon sequestration in the forest and wood industry sector plus substitution effects was 19.9 Mt C. Over 50 years the wood industry sector contributed 70% of the total carbon sequestration plus substitution effects. N2 - Wälder beeinflussen in vielfältiger Weise unser Leben. Für den Waldbesitzer sind sie Einkommensquelle, die Holzindustrie versorgen sie mit dem Rohstoff, aus dem unzählige Dinge für den täglichen Bedarfs hergestellt werden, wie zum Beispiel Baumaterialien, Möbel, Gartengeräte, Spielzeug und Papier. Außerdem versorgen Wälder uns mit sauberem Grundwasser, sind Lebensraum für Pflanzen und Tiere und tragen somit zum Erhalt der Artenvielfalt bei. Nicht zuletzt beeinflussen Wälder das Klimasystem, da sie der Atmosphäre das Treibhausgas CO2 entziehen und Kohlenstoff in Biomasse und Boden speichern. Förster stehen nun vor der anspruchsvollen Aufgabe, eine Balance zwischen den vielfältigen und oft auch gegensätzlichen Waldfunktionen zu finden und die Ansprüche von Interessengruppen wahrzunehmen. Zusätzlich müssen im waldbaulichen Entscheidungsprozess Risiken und Unsicherheiten durch unberechenbare externe Faktoren, wie das Klima, beachtet werden. Ziel der Arbeit war es, den Einfluss von Klima und Waldbaustrategien auf Waldfunktionen zu untersuchen. Als Testgebiet fungierte das Revier Kleinsee im Südosten Brandenburgs, in dem Kiefern- und Eichenbestände vorherrschen. In einem wissenschaftlichen Dialog mit Angestellten der Forstbehörde, Privatwaldbesitzern, Vertretern von Naturschutzverbänden sowie Wissenschaftlern definierten die Teilnehmer die wichtigsten Waldfunktionen: Kohlenstoffspeicherung, Grundwasserneubildung, Biodiversität und Holzproduktion. Die Simulationen wurden mit Hilfe des Waldwachstumsmodells 4C und einem neu implementierten Holzproduktmodell (WPM) über einen Zeitraum von 100 Jahren durchgeführt. Dabei wurden den heutigen Klimabedingungen zwei Klimaänderungsszenarien gegenübergestellt, die auf den globalen Zirkulationsmodellen HadCM2 und ECHAM4 basieren. Es stellte sich heraus, dass unter den angenommenen Klimaänderungen das Wachstum der Bestände steigt und sich damit die Kohlenstoffspeicherung und der Ertrag aus Holzernten erhöht, wohingegen Biodiversität und Grundwasserneubildung nur sehr gering beeinflusst werden. Der Nutzen der Waldbewirtschaftungsstrategien für drei Interessensgruppen (Forstbehörde, private Waldbesitzer, Naturschutzvereine) wurde mit einer multikriteriellen Analysemethode bewertet. Dabei unterschieden sich die Rangfolge und Gewichtung der einzelnen Waldfunktionen sowie die daraus resultierende Wahl der Waldbaustrategien zwischen den Naturschützern einerseits sowie den stärker ökonomisch orientierten Landeswaldförstern und privaten Waldbesitzern anderseits. Naturschutzvereine bevorzugen das Einstellen der Waldbewirtschaftung, aber auch die aktuelle Waldbaustrategie, mit mäßiger Durchforstungsintensität und einem hohen Anteil an Eichenbeständen entspricht ihren Zielsetzungen. Dagegen lag die Präferenz der Landeswaldförster sowie privaten Waldbesitzer auf einer Walbaustrategie mit einem hohen Anteil an Kiefernbeständen, um den Ertrag unter Beachtung der anderen Waldfunktionen zu steigern. Als Fazit geht aus dieser Teilstudie hervor, dass die Bewertung von Waldbaustrategien hinsichtlich ihrer Eignung für eine multifunktionale Waldbewirtschaftung unter Beachtung von Ansprüchen verschiedener Interessengruppen und ungewissen klimatischen Bedingungen unter Verwendung von 4C und einer multikriteriellen Analysemethode sehr gut möglich ist. Besonderes Augenmerk galt dem Einfluss von Waldbaustrategien auf den Kohlenstoffkreislauf, wobei nicht nur die Kohlenstoffspeicherung im Wald, sondern auch in Holzprodukten, sowie die Verringerung von CO2-Emissionen durch energetische und stoffliche Nutzung von Holz betrachtet wurden. Die potentielle Reduktion von CO2-Emissionen durch das Ersetzen von Erzeugnissen und Energie aus nicht nachwachsenden Rohstoffen durch Holz (Smat und Sen) wurde basierend auf Daten verschiedener Studien geschätzt. Eine Sensitivitätsanalyse untersuchte Unsicherheiten bei der Initialisierung des WPMs und der Berechung von Smat. Verschiedene Szenarien führten zu einem besseren Verständnis dafür, wie sich Änderungen im Energiesektor und Holzproduktsektor auf das Potential, Kohlenstoff zu speichern bzw. CO2-Emissionen zu verringen auswirken. Die Ergebnisse zeigen, dass die Reduzierung von CO2-Emissionen im Holzproduktsektor durch die Nutzung von Holz als Werkstoff und Brennstoff höher ist als durch die Akkumulation von Kohlenstoff im Wald. Im Gegensatz zu den Kohlenstoffspeichern im Wald, die sowohl Quellen als auch Senken sein können, werden durch die Nutzung von Holz CO2-Emissionen verringert, solange im Zuge der Waldbewirtschaftung Holz für die Weiterverarbeitung zur Verfügung gestellt wird. Simulationen auf Bundesebene ergaben, dass in Deutschland die Forst- und Holzwirtschaft jährlich dazu beitragen die CO2-Emissionen um 19,9 Mt Kohlenstoff zu verringern, wobei 70% auf die Holzindustrie und den Substitutionseffekt entfallen. KW - Kohlenstoffspeicherung KW - Waldwachstumsmodell 4C KW - Holzprodukte KW - Klimawandel KW - carbon sequestration KW - forest growth model 4C KW - wood products KW - climate change Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-27657 ER - TY - THES A1 - Popp, Alexander T1 - An integrated modelling approach for sustainable management of semi-arid and arid rangelands T1 - Ein integrativer Modellierungsansatz für ein nachhaltiges Management semi-arider und arider Beweidungsgebiete N2 - The need to develop sustainable resource management strategies for semi-arid and arid rangelands is acute as non-adapted grazing strategies lead to irreversible environmental problems such as desertification and associated loss of economic support to society. In such vulnerable ecosystems, successful implementation of sustainable management strategies depends on well-founded under-standing of processes at different scales that underlay the complex system dynamic. There is ample evidence that, in contrast to traditional sectoral approaches, only interdisciplinary research does work for resolving problems in conservation and natural resource management. In this thesis I combined a range of modeling approaches that integrate different disciplines and spatial scales in order to contribute to basic guidelines for sustainable management of semi-arid and arid range-lands. Since water availability and livestock management are seen as most potent determinants for the dynamics of semi-arid and arid ecosystems I focused on (i) the interaction of ecological and hydro-logical processes and (ii) the effect of farming strategies. First, I developed a grid-based and small-scaled model simulating vegetation dynamics and inter-linked hydrological processes. The simulation results suggest that ecohydrological interactions gain importance in rangelands with ascending slope where vegetation cover serves to obstruct run-off and decreases evaporation from the soil. Disturbances like overgrazing influence these positive feedback mechanisms by affecting vegetation cover and composition. In the second part, I present a modeling approach that has the power to transfer and integrate ecological information from the small scale vegetation model to the landscape scale, most relevant for the conservation of biodiversity and sustainable management of natural resources. I combined techniques of stochastic modeling with remotely sensed data and GIS to investigate to which ex-tent spatial interactions, like the movement of surface water by run-off in water limited environments, affect ecosystem functioning at the landscape scale. My simulation experiments show that overgrazing decreases the number of vegetation patches that act as hydrological sinks and run-off increases. The results of both simulation models implicate that different vegetation types should not only be regarded as provider of forage production but also as regulator of ecosystem functioning. Vegetation patches with good cover of perennial vegetation are capable to catch and conserve surface run-off from degraded surrounding areas. Therefore, downstream out of the simulated system is prevented and efficient use of water resources is guaranteed at all times. This consequence also applies to commercial rotational grazing strategies for semi-arid and arid rangelands with ascending slope where non-degraded paddocks act as hydrological sinks. Finally, by the help of an integrated ecological-economic modeling approach, I analyzed the relevance of farmers’ ecological knowledge for longterm functioning of semi-arid and arid grazing systems under current and future climatic conditions. The modeling approach consists of an ecological and an economic module and combines relevant processes on either level. Again, vegetation dynamics and forage productivity is derived by the small-scaled vegetation model. I showed that sustainable management of semi-arid and arid rangelands relies strongly on the farmers’ knowledge on how the ecosystem works. Furthermore, my simulation results indicate that the projected lower annual rainfall due to climate change in combination with non-adapted grazing strategies adds an additional layer of risk to these ecosystems that are already prone to land degradation. All simulation models focus on the most essential factors and ignore specific details. Therefore, even though all simulation models are parameterized for a specific dwarf shrub savanna in arid southern Namibia, the conclusions drawn are applicable for semi-arid and arid rangelands in general. N2 - Nachhaltige Managementstrategien für semi-aride und aride Beweidungsgebiete sind äusserst bedeutend, da ein nicht nachhaltiges Management sehr schnell zu irreversiblen Umweltproblemen und damit verbundenem Verlust der ökonomischen Prosperität führt. Obwohl Wasserverfügbarkeit und Viehmanagement als die bedeutendsten Faktoren für die Dynamik semi-arider und arider Ökosysteme angesehen werden, ist deren Einfluss und Interaktion nicht genügend erforscht. Ziel der Dissertation war, das Wissen über diese Prozesse zu erweitern, um grundsätzliche Richtlinien für die nachhaltige Nutzung semi-arider und arider Beweidungsgebiete zu erstellen. Hierfür habe ich in dieser Arbeit, die aus drei aufeinander aufbauenden Teilen besteht, mehrere Modellierungstechniken kombiniert. Für den ersten Teil meiner Arbeit habe ich ein gitterbasiertes und kleinskaliges Modell entwickelt, welches die Vegetationsdynamik und damit verbundene hydrologische Prozesse wie Oberflächenabfluss und Evaporation simuliert. Da Entscheidungen zur nachhaltigen Nutzung von Resourcen auf der Landschaftsebene getroffen werden, stelle ich im zweiten Teil der Arbeit eine neue Methode vor, mit deren Hilfe man diese kleinskaligen ökologischen Informationen auf die Landschaftsebene übertragen kann. Um zu untersuchen wie Oberflächenabfluss das Funktionieren von Ökosystemen auf Landschaftsebene beeinflusst, habe ich Techniken der stochastischen Modellierung mit Techniken der Fernerkundung und GIS kombiniert.. Die Ergebnisse beider Simulationsmodelle implizieren, dass öko-hydrologische Interaktionen in Beweidungsgebieten mit ausgeprägter Topographie von Bedeutung sind. Verschiedene Vegetationstypen sollten nicht nur als Futterquelle für die Weidetiere betrachtet werden, sondern auch bezüglich ihrer Bedeutung als Regler der Ökosystemfunktion. Vegetationsbestände mit einem hohen Bedeckungsgrad an perennierender Vegetation können Oberflächenabfluss aus degradierten benachbarten Gebieten abfangen. Störungen wie Überweidung beeinflussen diesen positiven Rückkopplungsmechanismus negativ, indem sie Vegetationsbedeckung und -zusammensetzung verändern. Im letzten Teil der Arbeit habe ich mit Hilfe eines ökologisch-ökonomischen Simulationsmodells die Bedeutung des ökologischen Verständnisses der Farmer für ein langfristiges Funktionieren von semi-ariden und ariden Beweidungssystemen unter aktuellen und prognostizierten klimatischen Bedingungen untersucht. Auch hier wird die Vegetationsdynamik und – produktivität beider Module mit Hilfe des kleinskaligen Vegetationsmodells abgeleitet. Die Ergebnisse zeigen, dass ein nachhaltiges Management semi-arider und arider Savannen sehr stark vom Verständnis der Farmer für die Funktionsweise des Ökosystems abhängt. Des Weiteren weist das Modell darauf hin, dass ein durch den prognostizierten Klimawandel reduzierter Jahresniederschlag in Kombination mit nicht-angepassten Beweidungsstrategien ein hohes Risiko für diese Ökosysteme darstellt. Meine Arbeit trägt zu einem besseren Verständnis grundlegender Prozesse der Ökosystemdynamik einer ariden Zwergstrauchsavanne im südlichen Namibia bei. Da sich alle drei Simulationsmodelle auf grundlegende Faktoren konzentrieren und spezifische Details ignorieren, können die Schlussfolgerungen auch auf andere semi-aride und aride Beweidungsgebiete übertragen werden. KW - Simulationsmodell KW - nachhaltige Landnutzung KW - Klimawandel KW - arid KW - simulation model KW - sustainable management KW - climate change KW - arid Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15103 ER - TY - THES A1 - Post, Joachim T1 - Integrated process-based simulation of soil carbon dynamics in river basins under present, recent past and future environmental conditions T1 - Prozessbasierte Modellierung der Bodenkohlenstoffdynamik in Flusseinzugsgebieten unter heutigen und zukünftigen Umweltbedingungen N2 - Soils contain a large amount of carbon (C) that is a critical regulator of the global C budget. Already small changes in the processes governing soil C cycling have the potential to release considerable amounts of CO2, a greenhouse gas (GHG), adding additional radiative forcing to the atmosphere and hence to changing climate. Increased temperatures will probably create a feedback, causing soils to release more GHGs. Furthermore changes in soil C balance impact soil fertility and soil quality, potentially degrading soils and reducing soils function as important resource. Consequently the assessment of soil C dynamics under present, recent past and future environmental conditions is not only of scientific interest and requires an integrated consideration of main factors and processes governing soil C dynamics. To perform this assessment an eco-hydrological modelling tool was used and extended by a process-based description of coupled soil carbon and nitrogen turnover. The extended model aims at delivering sound information on soil C storage changes beside changes in water quality, quantity and vegetation growth under global change impacts in meso- to macro-scale river basins, exemplary demonstrated for a Central European river basin (the Elbe). As a result this study: ▪ Provides information on joint effects of land-use (land cover and land management) and climate changes on croplands soil C balance in the Elbe river basin (Central Europe) presently and in the future. ▪ Evaluates which processes, and at what level of process detail, have to be considered to perform an integrated simulation of soil C dynamics at the meso- to macro-scale and demonstrates the model’s capability to simulate these processes compared to observations. ▪ Proposes a process description relating soil C pools and turnover properties to readily measurable quantities. This reduces the number of model parameters, enhances the comparability of model results to observations, and delivers same performance simulating long-term soil C dynamics as other models. ▪ Presents an extensive assessment of the parameter and input data uncertainty and their importance both temporally and spatially on modelling soil C dynamics. For the basin scale assessments it is estimated that croplands in the Elbe basin currently act as a net source of carbon (net annual C flux of 11 g C m-2 yr-1, 1.57 106 tons CO2 yr-1 entire croplands on average). Although this highly depends on the amount of harvest by-products remaining on the field. Future anticipated climate change and observed climate change in the basin already accelerates soil C loss and increases source strengths (additional 3.2 g C m-2 yr-1, 0.48 106 tons CO2 yr-1 entire croplands). But anticipated changes of agro-economic conditions, translating to altered crop share distributions, display stronger effects on soil C storage than climate change. Depending on future use of land expected to fall out of agricultural use in the future (~ 30 % of croplands area as “surplus” land), the basin either considerably looses soil C and the net annual C flux to the atmosphere increases (surplus used as black fallow) or the basin converts to a net sink of C (sequestering 0.44 106 tons CO2 yr-1 under extensified use as ley-arable) or reacts with decrease in source strength when using bioenergy crops. Bioenergy crops additionally offer a considerable potential for fossil fuel substitution (~37 PJ, 1015 J per year), whereas the basin wide use of harvest by-products for energy generation has to be seen critically although offering an annual energy potential of approximately 125 PJ. Harvest by-products play a central role in soil C reproduction and a percentage between 50 and 80 % should remain on the fields in order to maintain soil quality and fertility. The established modelling tool allows quantifying climate, land use and major land management impacts on soil C balance. New is that the SOM turnover description is embedded in an eco-hydrological river basin model, allowing an integrated consideration of water quantity, water quality, vegetation growth, agricultural productivity and soil carbon changes under different environmental conditions. The methodology and assessment presented here demonstrates the potential for integrated assessment of soil C dynamics alongside with other ecosystem services under global change impacts and provides information on the potentials of soils for climate change mitigation (soil C sequestration) and on their soil fertility status. N2 - Böden speichern große Mengen Kohlenstoff (C) und beeinflussen wesentlich den globalen C Haushalt. Schon geringe Änderungen der Steuergrößen des Bodenkohlenstoffs können dazu führen, dass beträchtliche Mengen CO2, ein Treibhausgas, in die Atmosphäre gelangen und zur globalen Erwärmung und dem Klimawandel beitragen. Der globale Temperaturanstieg verursacht dabei höchstwahrscheinlich eine Rückwirkung auf den Bodenkohlenstoffhaushalt mit einem einhergehenden erhöhten CO2 Fluss der Böden in die Atmosphäre. Weiterhin wirken sich Änderungen im Bodenkohlenstoffhaushalt auf die Bodenfruchtbarkeit und Bodenqualität aus, wobei eine Minderung der Bodenkohlenstoffvorräte wichtige Funtionen des Bodens beeinträchtigt und folglich den Boden als wichtige Ressource nachhaltig beinflusst. Demzufolge ist die Quantifizierung der Bodenkohlenstoffdynamik unter heutigen und zukünftigen Bedingungen von hohem Interesse und erfordert eine integrierte Betrachtung der wesentlichen Faktoren und Prozesse. Zur Quantifizierung wurde ein ökohydrologisches Flusseinzugsgebietsmodell erweitert. Ziel des erweiterten Modells ist es fundierte Informationen zu Veränderungen des Bodenkohlenstoffhaushaltes, neben Veränderungen der Wasserqualität, der Wasserverfügbarkeit und des Vegetationswachstums unter Globalem Wandel in meso- bis makroskaligen Flusseinzugsgebieten bereitzustellen. Dies wird am Beispiel eines zentraleuropäischen Flusseinzugsgebietes (der Elbe) demonstriert. Zusammenfassend ergibt diese Arbeit: ▪ eine Quantifizierung der heutigen und zukünftigen Auswirkungen des Klimawandels sowie von Änderungen der Landnutzung (Bodenbedeckung und Bodenbearbeitung) auf den Bodenkohlenstoffhaushalt agrarisch genutzter Räume im Einzugsgebiet der Elbe. ▪ eine Beurteilung welche Prozesse, und zu welchem Prozessdetail, zur integrierten Simulation der Bodenkohlenstoffdynamik in der meso- bis makroskala zu berücksichtigen sind. Weiterhin wird die Eignung der Modellerweiterung zur Simulation dieser Prozesse unter der Zuhilfenahme von Messwerten dargelegt. ▪ darauf begründet wird eine Prozessbeschreibung vorgeschlagen die die Eigenschaften der Bodenkohlenstoffspeicher und deren Umsetzungsrate mit in der betrachteten Skala zur Verfügung stehenden Messdaten und Geoinformationen verbindet. Die vorgeschlagene Prozessbeschreibung kann als robust hinsichtlich der Parametrisierung angesehen werden, da sie mit vergleichsweise wenigen Modelparametern eine ähnliche Güte wie andere Bodenkohlenstoffmodelle ergibt. ▪ eine umfassende Betrachtung der Modell- und Eingangsdatenunsicherheiten von Modellergebnissen in ihrer räumlichen und zeitlichen Ausprägung. Das in dieser Arbeit vorgestellte Modellsystem erlaubt eine Quantifizierung der Auswirkungen des Klima- und Landnutzungswandels auf den Bodenkohlenstoffhaushalt. Neu dabei ist, dass neben Auswirkungen auf den Bodenkohlenstoffhaushalt auch Auswirkungen auf Wasserverfügbarkeit, Wasserqualität, Vegetationswachstum und landwirtschaftlicher Produktivität erfasst werden können. Die im Rahmen dieser Arbeit dargelegten Ergebnisse erlauben eine integrierte Betrachtung der Auswirkungen des Globalen Wandels auf wichtige Ökosystemfunktionen in meso- bis makro-skaligen Flusseinzugsgebieten. Weiterhin können hier gewonnene Informationen zur Potentialabschätzung der Böden zur Linderung des Klimawandels (durch C Festlegung) und zum Erhalt ihrer Fruchtbarkeit genutzt werden. KW - Kohlenstoff KW - Stickstoff KW - Anthropogene Klimaänderung KW - Bioenergie KW - Unsicherheit KW - Ökohydrologie KW - Ökosystemmodellierung KW - Landnutzungsänderung KW - Modellsensitivität KW - eco-hydrology KW - Ecosystem modelling KW - Carbon KW - Nitrogen KW - land use change KW - climate change KW - terrestrial carbon balance KW - model uncertainty Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-11507 ER - TY - THES A1 - Schwager, Monika T1 - Climate change, variable colony sizes and temporal autocorrelation : consequences of living in changing environments T1 - Klimawandel, variable Koloniegrößen und zeitliche Autokorrelation : Leben in einer variablen Umwelt N2 - Natural and human induced environmental changes affect populations at different time scales. If they occur in a spatial heterogeneous way, they cause spatial variation in abundance. In this thesis I addressed three topics, all related to the question, how environmental changes influence population dynamics. In the first part, I analysed the effect of positive temporal autocorrelation in environmental noise on the extinction risk of a population, using a simple population model. The effect of autocorrelation depended on the magnitude of the effect of single catastrophic events of bad environmental conditions on a population. If a population was threatened by extinction only, when bad conditions occurred repeatedly, positive autocorrelation increased extinction risk. If a population could become extinct, even if bad conditions occurred only once, positive autocorrelation decreased extinction risk. These opposing effects could be explained by two features of an autocorrelated time series. On the one hand, positive autocorrelation increased the probability of series of bad environmental conditions, implying a negative effect on populations. On the other hand, aggregation of bad years also implied longer periods with relatively good conditions. Therefore, for a given time period, the overall probability of occurrence of at least one extremely bad year was reduced in autocorrelated noise. This can imply a positive effect on populations. The results could solve a contradiction in the literature, where opposing effects of autocorrelated noise were found in very similar population models. In the second part, I compared two approaches, which are commonly used for predicting effects of climate change on future abundance and distribution of species: a "space for time approach", where predictions are based on the geographic pattern of current abundance in relation to climate, and a "population modelling approach" which is based on correlations between demographic parameters and the inter-annual variation of climate. In this case study, I compared the two approaches for predicting the effect of a shift in mean precipitation on a population of the sociable weaver Philetairus socius, a common colonially living passerine bird of semiarid savannahs of southern Africa. In the space for time approach, I compared abundance and population structure of the sociable weaver in two areas with highly different mean annual precipitation. The analysis showed no difference between the two populations. This result, as well as the wide distribution range of the species, would lead to the prediction of no sensitive response of the species to a slight shift in mean precipitation. In contrast, the population modelling approach, based on a correlation between reproductive success and rainfall, predicted a sensitive response in most model types. The inconsistency of predictions was confirmed in a cross-validation between the two approaches. I concluded that the inconsistency was caused, because the two approaches reflect different time scales. On a short time scale, the population may respond sensitively to rainfall. However, on a long time scale, or in a regional comparison, the response may be compensated or buffered by a variety of mechanisms. These may include behavioural or life history adaptations, shifts in the interactions with other species, or differences in the physical environment. The study implies that understanding, how such mechanisms work, and at what time scale they would follow climate change, is a crucial precondition for predicting ecological consequences of climate change. In the third part of the thesis, I tested why colony sizes of the sociable weaver are highly variable. The high variation of colony sizes is surprising, as in studies on coloniality it is often assumed that an optimal colony size exists, in which individual bird fitness is maximized. Following this assumption, the pattern of bird dispersal should keep colony sizes near an optimum. However, I showed by analysing data on reproductive success and survival that for the sociable weaver fitness in relation to colony size did not follow an optimum curve. Instead, positive and negative effects of living in large colonies overlaid each other in a way that fitness was generally close to one, and density dependence was low. I showed in a population model, which included an evolutionary optimisation process of dispersal that this specific shape of the fitness function could lead to a dispersal strategy, where the variation of colony sizes was maintained. N2 - Änderungen in der Umwelt - sowohl natürliche Variabilität als auch anthropogene Änderungen - beeinflussen Populationen auf verschiedenen Zeitskalen. Wenn sie räumlich heterogen wirken, verursachen sie räumliche Variabilität in der Abundanz. In dieser Dissertation habe ich drei Themen bearbeitet, die sich auf den Effekt von Änderungen in der Umwelt auf Populationsdynamiken beziehen. Im ersten Teil untersuchte ich an einem einfachen Populationsmodell den Effekt von positiver zeitlicher Autokorrelation im Umweltrauschen auf das Extinktionsrisiko einer Population. Der Effekt der Autokorrelation hing davon ab, wie empfindlich eine Population gegenüber singulären, katastrophenähnlichen Ereignissen schlechter Umweltbedingungen war. War die Population nur dann direkt bedroht, wenn eine Serie von schlechten Umweltbedingungen auftrat, erhöhte positive Autokorrelation das Extinktionsrisiko. Konnte eine Population auch dann aussterben, wenn schlechte Umweltbedingungen einzeln auftraten, verringerte positive Autokorrelation das Extinktionsrisiko. Diese unterschiedlichen Effekte konnten durch zwei Eigenschaften autokorrelierter Zeitreihen erklärt werden. Einerseits erhöht positive Autokorrelation die Wahrscheinlichkeit, daß in einer Zeitreihe Serien von schlechten Bedingungen auftreten. Andererseits führt die Aggregation von schlechten Jahren auch zu langen Zeiträumen mit relativ guten Bedingungen. Deshalb ist die Wahrscheinlichkeit, daß innerhalb eines bestimmten Zeitraums zumindest ein extrem schlechtes Jahr auftritt, geringer unter positiver Autokorrelation. Die Ergebnisse konnten einen Widerspruch in der Literatur aufklären, in dem unterschiedliche Effekte von autokorreliertem Umweltrauschen auf das Extinktionsrisiko gefunden wurden, obwohl sehr ähnliche Modelle verwendet wurden. Im zweiten Teil, verglich ich zwei Methoden, die häufig verwendet werden, um den Effekt von Klimawandel auf die zukünftige Verbreitung und Abundanz von Arten vorauszusagen: Ein "Raum-ersetzt-Zeit-Ansatz" ("space for time approach"), in dem Voraussagen aufgrund der aktuellen geographischen Verbreitung und Abundanz einer Art in Relation zum Klima getroffen werden, und ein "Populationsmodell-Ansatz", der auf Korrelationen zwischen demographischen Parametern und der jährlichen Variabilität im Klimas beruht. In einer Fallstudie verglich ich die beiden Methoden, um den Effekt einer Änderung im mittleren Niederschlag auf eine Population des Siedelwebers Philetairus socius vorauszusagen. Der Siedelweber ist eine häufige, koloniale Vogelart in semiariden Savannen im südlichen Afrika. Im "space for time approach" verglich ich zwei Populationen des Siedelwebers in Gebieten mit stark unterschiedlichem mittleren Niederschlag. Die Untersuchung zeigte keinen Unterschied zwischen den beiden Populationen. Sowohl dieses Ergebnis als auch das weite Verbreitungsgebiet des Siedelwebers implizieren keine sensitive Reaktion der Art auf eine geringfügige Änderung im mittleren Niederschlag. Im Unterschied dazu zeigte der "Populationsmodell-Ansatz", der auf einer Korrelation zwischen Niederschlag und dem Reproduktionserfolg des Siedlerwebers beruhte, eine sensitive Reaktion in den meisten der untersuchten Modelltypen. Die Inkonsistenz der Ergebnisse wurde in einer Kreuz-Validierung der beiden Ansätze bestätigt. Aus der Untersuchung folgerte ich, daß die unterschiedlichen Ergebnisse dadurch verursacht wurden, daß die beiden Methoden unterschiedliche Zeitskalen widerspiegeln. Auf einer kurzen Zeitskala reagiert die Population sensitiv auf Änderungen im Niederschlag. Auf einer großen Zeitskala oder im räumlichen Vergleich kann die sensitive Reaktion jedoch durch eine Reihe von Mechanismen gepuffert oder kompensiert werden. Diese Mechanismen können Anpassungen im Verhalten oder in der Lebensgeschichte ("life history"), Änderungen in den Interaktionen mit andern Arten oder Unterschiede in der physikalischen Umgebung beinhalten. Diese Studie zeigt, daß ein Verständnis, wie solche Mechanismen funktionieren, und auf welcher Zeitskala sie wirken, eine wesentliche Voraussetzung ist, um Prognosen über ökologische Effekte des Klimawandels treffen zu können. Im dritten Teil untersuchte ich, warum Kolonien des Siedelwebers so stark in ihrer Größe variieren. Die Variabilität der Koloniegrößen ist erstaunlich, da man in Untersuchungen zur Kolonialität bei Tieren oft davon ausgeht, daß eine optimale Koloniegröße besteht, bei der die individuelle Fitneß maximiert ist. Aufgrund dieser Annahme sollten Vögel sich so im Raum ausbreiten, daß die Koloniegrößen möglicht nahe am Optimum liegen. In dieser Arbeit konnte ich jedoch anhand von Daten zum Reproduktionserfolg und zur Überlebensrate in Relation zur Koloniegröße zeigen, daß die Funktion der Fitneß in Abhängigkeit von der Koloniegröße nicht einer Optimumskurve folgt. Statt dessen überlagern sich positive und negative Effekte der Koloniegröße so, daß die Populationswachstumsrate generell nahe eins ist, und die Dichteabhängigkeit gering ist. Auf diesen Ergebnissen aufbauend zeigte ich in einem Populationsmodell, das einen evolutionären Optimierungsprozeß der Dispersal-Strategie beinhaltet, daß die spezifische Form der Fitneßfunktion zu einer Dispersal-Strategie führen kann, bei der die hohe Variabilität der Koloniegrößen aufrecht erhalten wird. T2 - Climate change, variable colony sizes and temporal autocorrelation : consequences of living in changing environments KW - Populationsbiologie KW - Ökologie KW - Theoretische Ökologie KW - Ökologische Modelle KW - Klimawandel KW - Umweltrauschen KW - Extinktionsrisko KW - Kolonialität KW - ecological modelling KW - red noise KW - extinction risk KW - coloniality KW - climate change Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5744 ER -