TY - THES A1 - Goktas, Melis T1 - Coiled coils as molecular force sensors for the extracellular matrix T1 - Coiled coils als molekulare Kraftsensoren für die extrazelluläre Matrix N2 - Kraft spielt eine fundamentale Rolle bei der Regulation von biologischen Prozessen. Zellen messen mechanische Eigenschaften der extrazellulären Matrix und benutzen diese Information zur Regulierung ihrer Funktion. Dazu werden im Zytoskelett Kräfte generiert und auf extrazelluläre Rezeptor-Ligand Wechselwirkungen übertragen. Obwohl der grundlegende Einfluss von mechanischen Signalen für das Zellschicksal eindeutig belegt ist, sind die auf molekularer Ebene wirkenden Kräfte kaum bekannt. Zur Messung dieser Kräfte wurden verschiedene molekulare Kraftsensoren entwickelt, die ein mechanisches Inputsignal aufnehmen und in einen optischen Output (Fluoreszenz) umwandeln. Diese Arbeit etabliert einen neuen Kraftsensor-Baustein, der die mechanischen Eigenschaften der extrazellulären Matrix nachbildet. Dieser Baustein basiert auf natürlichen Matrixproteinen, sogenannten coiled coils (CCs), die α-helikale Strukturen im Zytoskelett und der Matrix formen. Eine Serie an CC-Heterodimeren wurde konzipiert und mittels Einzelmolekül-Kraftspektroskopie und Molekulardynamik-Simulationen charakterisiert. Es wurde gezeigt, dass eine anliegende Scherkraft die Entfaltung der helikalen Struktur induziert. Die mechanische Stabilität (Separation der CC Helices) wird von der CC Länge und der Zuggeschwindigkeit bestimmt. Im Folgenden wurden 2 CCs unterschiedlicher Länge als Kraftsensoren verwendet, um die Adhäsionskräfte von Fibroblasten und Endothelzellen zu untersuchen. Diese Kraftsensoren deuten an, dass diese Zelltypen unterschiedlich starke Kräften generieren und mittels Integrin-Rezeptoren auf einen extrazellulären Liganden (RGD-Peptid) übertragen. Dieses neue CC-basierte Sensordesign ist ein leistungsstarkes Werkzeug zur Betrachtung zellulärer Kraftwahrnehmungsprozesse auf molekularer Ebene, das neue Erkenntnisse über die involvierten Mechanismen und Kräfte an der Zell-Matrix-Schnittstelle ermöglicht. Darüber hinaus wird dieses Sensordesign auch Anwendung bei der Entwicklung mechanisch kontrollierter Biomaterialien finden. Dazu können mechanisch charakterisierte, und mit einem Fluoreszenzreporter versehene, CCs in Hydrogele eingefügt werden. Dies erlaubt die Untersuchung der Zusammenhänge zwischen molekularer und makroskopischer Mechanik und eröffnet neue Möglichkeiten zur Diskriminierung von lokalen und globalen Faktoren, die die zelluläre Antwort auf mechanische Signale bestimmen. N2 - Force plays a fundamental role in the regulation of biological processes. Cells can sense the mechanical properties of the extracellular matrix (ECM) by applying forces and transmitting mechanical signals. They further use mechanical information for regulating a wide range of cellular functions, including adhesion, migration, proliferation, as well as differentiation and apoptosis. Even though it is well understood that mechanical signals play a crucial role in directing cell fate, surprisingly little is known about the range of forces that define cell-ECM interactions at the molecular level. Recently, synthetic molecular force sensor (MFS) designs have been established for measuring the molecular forces acting at the cell-ECM interface. MFSs detect the traction forces generated by cells and convert this mechanical input into an optical readout. They are composed of calibrated mechanoresponsive building blocks and are usually equipped with a fluorescence reporter system. Up to date, many different MFS designs have been introduced and successfully used for measuring forces involved in the adhesion of mammalian cells. These MFSs utilize different molecular building blocks, such as double-stranded deoxyribonucleic acid (dsDNA) molecules, DNA hairpins and synthetic polymers like polyethylene glycol (PEG). These currently available MFS designs lack ECM mimicking properties. In this work, I introduce a new MFS building block for cell biology applications, derived from the natural ECM. It combines mechanical tunability with the ability to mimic the native cellular microenvironment. Inspired by structural ECM proteins with load bearing function, this new MFS design utilizes coiled coil (CC)-forming peptides. CCs are involved in structural and mechanical tasks in the cellular microenvironment and many of the key protein components of the cytoskeleton and the ECM contain CC structures. The well-known folding motif of CC structures, an easy synthesis via solid phase methods and the many roles CCs play in biological processes have inspired studies to use CCs as tunable model systems for protein design and assembly. All these properties make CCs ideal candidates as building blocks for MFSs. In this work, a series of heterodimeric CCs were designed, characterized and further used as molecular building blocks for establishing a novel, next-generation MFS prototype. A mechanistic molecular understanding of their structural response to mechanical load is essential for revealing the sequence-structure-mechanics relationships of CCs. Here, synthetic heterodimeric CCs of different length were loaded in shear geometry and their mechanical response was investigated using a combination of atomic force microscope (AFM)-based single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations. SMFS showed that the rupture forces of short heterodimeric CCs (3-5 heptads) lie in the range of 20-50 pN, depending on CC length, pulling geometry and the applied loading rate (dF/dt). Upon shearing, an initial rise in the force, followed by a force plateau and ultimately strand separation was observed in SMD simulations. A detailed structural analysis revealed that CC response to shear load depends on the loading rate and involves helix uncoiling, uncoiling-assisted sliding in the direction of the applied force and uncoiling-assisted dissociation perpendicular to the force axis. The application potential of these mechanically characterized CCs as building blocks for MFSs has been tested in 2D cell culture applications with the goal of determining the threshold force for cell adhesion. Fully calibrated, 4- to 5-heptad long, CC motifs (CC-A4B4 and CC-A5B5) were used for functionalizing glass surfaces with MFSs. 3T3 fibroblasts and endothelial cells carrying mutations in a signaling pathway linked to cell adhesion and mechanotransduction processes were used as model systems for time-dependent adhesion experiments. A5B5-MFS efficiently supported cell attachment to the functionalized surfaces for both cell types, while A4B4-MFS failed to maintain attachment of 3T3 fibroblasts after the first 2 hours of initial cell adhesion. This difference in cell adhesion behavior demonstrates that the magnitude of cell-ECM forces varies depending on the cell type and further supports the application potential of CCs as mechanoresponsive and tunable molecular building blocks for the development of next-generation protein-based MFSs.This novel CC-based MFS design is expected to provide a powerful new tool for observing cellular mechanosensing processes at the molecular level and to deliver new insights into the mechanisms and forces involved. This MFS design, utilizing mechanically tunable CC building blocks, will not only allow for measuring the molecular forces acting at the cell-ECM interface, but also yield a new platform for the development of mechanically controlled materials for a large number of biological and medical applications. KW - molecular force sensors KW - cell-ECM interactions KW - extracellular matrix (ECM) KW - cellular forces KW - coiled coil KW - single molecule force spectroscopy KW - molekulare Kraftsensoren KW - Zell-Matrix-Wechselwirkung KW - extrazelluläre Matrix KW - zelluläre Kräfte KW - coiled coil KW - Einzelmolekül-Kraftspektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427493 ER - TY - THES A1 - Neymeyer, Hanna T1 - Annexin A1 im chronischen Nierenversagen T1 - Annexin A1 in chronic renal failure N2 - Die Expansion des renalen Tubulointerstitiums aufgrund einer Akkumulation zellulärer Bestandteile und extrazellulärer Matrix ist eine charakteristische Eigenschaft der chronischen Nierenerkrankung (CKD) und führt zu einer Progression der Erkrankung in Richtung eines terminalen Nierenversagens. Die Fibroblasten Proliferation und ihre Transformation hin zum sekretorischen Myofibroblasten-Phänotyp stellen hierbei Schlüsselereignisse dar. Signalprozesse, die zur Induktion der Myofibroblasten führen, werden aktiv beforscht um anti-fibrotische Therapieansätze zu identifizieren. Das anti-inflammatorische Protein Annexin A1 und sein Rezeptor Formyl-Peptid Rezeptor 2 (FPR2) wurden in verschiedenen Organsystemen mit der Regulation von Fibroblastenaktivität in Verbindung gebracht, jedoch wurden ihre Expression und Funktion bei renalen fibrotischen Erkrankungen bisher nicht untersucht. Ziel der aktuellen Studie war daher die Untersuchung der renalen Annexin A1- und FPR2-Expression in einem Tiermodell des chronischen Nierenversagens, sowie die Charakterisierung der funktionellen Rolle von Annexin A1 in der Regulation des Fibroblasten Phänotyps und ihrer Syntheseleistung. Dazu wurden neugeborene Sprague-Dawley Ratten in den ersten zwei Wochen ihres Lebens entweder mit Vehikel oder mit einem Angiotensin II Typ I Rezeptor Antagonisten behandelt und ohne weitere Intervention bis zu einem Alter von 11 Monaten (CKD Ratten) gehalten. Die Regulation und Lokalisation von Annexin A1 und FPR2 wurden mit Hilfe von Real-Time PCR und Immunhistochemie erfasst. Annexin A1- und FPR2-exprimierende Zellen wurden weiter durch Doppelimmunfluoreszenzfärbungen charakterisiert. Gefärbt wurde mit Antikörpern gegen endotheliale Zellen (rat endothelial cell antigen), Makrophagen (CD 68), Fibroblasten (CD73) und Myofibroblasten (alpha-smooth muscle actin (α-sma)). Zellkulturstudien wurden an immortalisierten renalen kortikalen Fibroblasten aus Wildtyp- und Annexin A1-defizienten Mäusen, sowie an etablierten humanen und murinen renalen Fibrolasten durchgeführt. Eine Überexpression von Annexin A1 wurde durch eine stabile Transfektion erreicht. Die Expression von Annexin A1, α-sma und Kollagen 1α1 wurde durch Real-Time PCR, Western Blot und Immuhistochemie erfasst. Die Sekretion des Annexin A1 Proteins wurde nach TCA-Fällung des Zellkulturüberstandes im Western Blot untersucht. Wie zu erwarten zeigten die CKD Ratten eine geringere Anzahl an Nephronen mit deutlicher glomerulären Hypertrophie. Der tubulointerstitielle Raum war durch fibrilläres Kollagen, aktivierte Fibroblasten und inflammatorische Zellen expandiert. Parallel dazu war die mRNA Expression von Annexin A1 und Transforming growth factor beta (TGF-β) signifikant erhöht. Die Annexin A1-Lokalisation mittels Doppelimmunfluorsezenz identifizierte eine große Anzahl von CD73-positiven kortikalen Fibroblasten und eine Subpopulation von Makrophagen als Annexin A1-positiv. Die Annexin A1-Menge in Myofibroblasten und renalen Endothelien war gering. FPR2 konnte in der Mehrzahl der renalen Fibroblasten, in Myofibroblasten, in einer Subpopulation von Makrophagen und in renalen Epithelzellen nachgewiesen werden. Eine Behandlung der murinen Fibroblasten mit dem pro-fibrotischen Zytokin TGF-β führte zu einem parallelen Anstieg der α-sma-, Kollagen 1α1- und Annexin A1-Biosynthese und zu einer gesteigerten Sekretion von Annexin A1. Eine Überexpression von Annexin A1 in murinen Fibroblasten reduzierte das Ausmaß der TGF-β induzierten α-sma- und Kollagen 1α1-Biosynthese. Fibroblasten aus Annexin A1-defizienten Mäusen zeigten einen starken Myofibroblasten-Phänotyp mit einer gesteigerten Expression an α-sma und Kollagen 1α1. Der Einsatz eines Peptidantagonisten des FPR2 (WRW4) resultierte in einer Stimulation der α-sma-Biosynthese, was die Vermutung nahe legte, dass Annexin A1 FPR2-vermittelt anti-fibrotische Effekte hat. Zusammenfassend zeigen diese Ergebnisse, dass renale kortikale Fibroblasten eine Hauptquelle des Annexin A1 im renalen Interstitium und einen Ansatzpunkt für Annexin A1-Signalwege in der Niere darstellen. Das Annexin A1/FPR2-System könnte daher eine wichtige Rolle in der Kontrolle des Fibroblasten Phänotyp und der Fibroblasten Aktivität spielen und daher einen neuen Ansatz für die anti-fibrotischen pharmakologischen Strategien in der Behandlung des CKD darstellen. N2 - Expansion of the renal tubulointerstitium due to an accumulation of cellular constituents and extracellular matrix is a characteristic feature of chronic kidney disease (CKD) and leads to the progression towards renal failure. Fibroblast proliferation and transformation to the secretory myofibroblast phenotype present key events herein. The signaling process which leads to the generation of myofibroblasts is actively investigated to identify targets for antifibrotic therapeutic strategies. The antiinflammatory protein annexin A1 and its receptor formyl peptide receptor 2 (FPR2) have been implicated in the regulation of fibroblasts from various organs but the expression and function of the two products in renal fibrotic disease have not been elucidated so far. Aim of the present study was therefore to investigate the renal expression of annexin A1 and FPR2 in an animal model of chronic kidney disease and to characterize the role of annexin A1 in the regulation of fibroblast phenotype and synthetic activity. To this end, newborn Sprague-Dawley rats were treated either with vehicle or with an angiotensin II type I receptor antagonist during the first two weeks of their life and kept without further intervention until the age of 11 month (CKD rats). Regulation and localization of annexin A1 and FPR2 were studied using real-time PCR and immunohistochemistry. Annexin A1 and FPR2 expressing cells were further characterized by double labeling immunofluorescence with markers for endothelial cells (rat endothelial cell antigen), macrophages (CD68), fibroblasts (CD73), and myofibroblasts (alpha-smooth muscle actin (α-sma)). Cell culture studies were conducted in immortalized renal cortical fibroblast derived from wildtype and from annexin A1-deficient mice as well as in established cell lines of human and murine renal fibroblasts. Overexpression of annexin A1 was achieved by stable transfection. Expression of annexin A1, α-sma and collagen 1α1 was determined using real-time PCR, Western blotting and immunohistochemistry. Secretion of annexin A1 was studied using trichloroacetic acid protein precipitation of cell culture supernatants and Western blotting. As expected, CKD rats had an overall lower number of nephrons with a marked glomerular hypertrophy. The tubulointerstitial space was expanded due to an accumulation of fibrillar collagens, activated fibroblasts and inflammatory cells. In parallel, mRNA expression for Annexin A1 and transforming growth factor beta (TGF-β) was significantly increased. Double labeling immunofluorescence localization of annexin A1 demonstrated a high abundance in CD73 positive cortical interstitial fibroblasts and in a subset of CD68 immunoreactive macrophages. The abundance in myofibroblasts and renal endothelia was low. FPR2 was found in the majority of renal fibroblasts, myofibroblasts, a subset of macrophages, and in renal endothelial cells. Treatment of cultured murine fibroblasts with the profibrotic cytokine TGF-β resulted in a parallel induction of α-sma-, collagen 1α1- and annexin A1 biosynthesis. In addition, annexin A1 secretion was markedly increased. Overexpression of annexin A1 in murine fibroblasts reduced TGF β-induced α-sma- and collagen 1α1-biosynthesis. Fibroblasts derived from annexin A1-deficient mice showed a strong myofibroblast phenotype with increased expression of both, α-sma-, and collagen 1α1. Application of a peptide antagonist of FPR2 receptor (WRW4) caused a stimulation of α-sma biosynthesis thus suggesting a role of FPR2 in the antifibrotic effects of annexin A1. In conclusion, these results identify renal cortical interstitial fibroblasts as major source and as a target for annexin A1 signalling in the kidney. The annexin A1/FPR2 signalling system may therefore play an important role in the control of fibroblast phenotype and activity and may therefore provide a novel target for antifibrotic pharmacological strategies in the treatment of CKD. KW - Myofibroblasten KW - Transforming Growth Factor beta KW - Formyl-Peptid Rezeptor 2 KW - extrazelluläre Matrix KW - myofibroblast KW - transforming growth factor beta KW - formyl peptide receptor 2 KW - extracellular matrix Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-69670 ER -