TY - THES A1 - Mayer, Dennis T1 - Time-resolved x-ray spectroscopy of 2-thiouracil T1 - Zeitaufgelöste Röntgenspektroskopie an 2-Thiouracil N2 - In this thesis, I present my contributions to the field of ultrafast molecular spectroscopy. Using the molecule 2-thiouracil as an example, I use ultrashort x-ray pulses from free- electron lasers to study the relaxation dynamics of gas-phase molecular samples. Taking advantage of the x-ray typical element- and site-selectivity, I investigate the charge flow and geometrical changes in the excited states of 2-thiouracil. In order to understand the photoinduced dynamics of molecules, knowledge about the ground-state structure and the relaxation after photoexcitation is crucial. Therefore, a part of this thesis covers the electronic ground-state spectroscopy of mainly 2-thiouracil to provide the basis for the time-resolved experiments. Many of the previously published studies that focused on the gas-phase time-resolved dynamics of thionated uracils after UV excitation relied on information from solution phase spectroscopy to determine the excitation energies. This is not an optimal strategy as solvents alter the absorption spec- trum and, hence, there is no guarantee that liquid-phase spectra resemble the gas-phase spectra. Therefore, I measured the UV-absorption spectra of all three thionated uracils to provide a gas-phase reference and, in combination with calculations, we determined the excited states involved in the transitions. In contrast to the UV absorption, the literature on the x-ray spectroscopy of thionated uracil is sparse. Thus, we measured static photoelectron, Auger-Meitner and x-ray absorption spectra on the sulfur L edge before or parallel to the time-resolved experiments we performed at FLASH (DESY, Hamburg). In addition, (so far unpublished) measurements were performed at the synchrotron SOLEIL (France) which have been included in this thesis and show the spin-orbit splitting of the S 2p photoline and its satellite which was not observed at the free-electron laser. The relaxation of 2-thiouracil has been studied extensively in recent years with ultrafast visible and ultraviolet methods showing the ultrafast nature of the molecular process after photoexcitation. Ultrafast spectroscopy probing the core-level electrons provides a complementary approach to common optical ultrafast techniques. The method inherits its local sensitivity from the strongly localised core electrons. The core energies and core-valence transitions are strongly affected by local valence charge and geometry changes, and past studies have utilised this sensitivity to investigate the molecular process reflected by the ultrafast dynamics. We have built an apparatus that provides the requirements to perform time-resolved x-ray spectroscopy on molecules in the gas phase. With the apparatus, we performed UV-pump x-ray-probe electron spectroscopy on the S 2p edge of 2-thiouracil using the free-electron laser FLASH2. While the UV triggers the relaxation dynamics, the x-ray probes the single sulfur atom inside the molecule. I implemented photoline self-referencing for the photoelectron spectral analysis. This minimises the spectral jitter of the FEL, which is due to the underlying self-amplified spontaneous emission (SASE) process. With this approach, we were not only able to study dynamical changes in the binding energy of the electrons but also to detect an oscillatory behaviour in the shift of the observed photoline, which we associate with non-adiabatic dynamics involving several electronic states. Moreover, we were able to link the UV-induced shift in binding energy to the local charge flow at the sulfur which is directly connected to the electronic state. Furthermore, the analysis of the Auger-Meitner electrons shows that energy shifts observed at early stages of the photoinduced relaxation are related to the geometry change in the molecule. More specifically, the observed increase in kinetic energy of the Auger-Meitner electrons correlates with a previously predicted C=S bond stretch. N2 - In dieser Arbeit präsentiere ich meine Beiträge zum Gebiet der ultraschnellen Molekülspektroskopie. Am Beispiel des Moleküls 2-Thiouracil verwende ich ultrakurze Röntgenpulse von Freie-Elektronen-Lasern, um die Relaxationsdynamik von Molekülproben in der Gasphase zu untersuchen. Unter Ausnutzung der für Röntgenstrahlung typischen Element- und Ortsselektivität untersuche ich den Ladungsfluss und die geometrischen Veränderungen in den angeregten Zuständen von 2-Thiouracil. Um die photoinduzierte Dynamik von Molekülen zu verstehen, ist das Wissen über die Grundzustandsstruktur und die Relaxation nach Photoanregung entscheidend. Daher befasst sich ein Teil dieser Arbeit mit der elektronischen Grundzustandsspektroskopie von 2-Thiouracil, um die Grundlage für die zeitaufgelösten Experimente zu schaffen. Viele der bisher veröffentlichten Studien, die sich mit der zeitaufgelösten Dynamik von Thiouracilen in der Gasphase nach UV-Anregung befassten, stützten sich zur Bestimmung der Anregungsenergien auf Informationen aus der Spektroskopie in Lösung. Dies ist nicht optimal, da Lösungsmittel das Absorptionsspektrum verändern und es daher keine Garantie dafür gibt, dass die Spektren in Lösung den Spektren der Gasphase ähneln. Daher habe ich die UV-Absorptionsspektren aller drei Thiouracile gemessen, um eine Referenz für die Gasphase zu erhalten, und in Kombination mit Berechnungen die an den Übergängen beteiligten angeregten Zustände bestimmt. Im Gegensatz zur UV-Absorption ist die Literatur zur Röntgenspektroskopie von thioniertem Uracil spärlich. Daher haben wir statische Photoelektronen-, Auger-Meitner- und Röntgenabsorptionsspektren an der Schwefel-L-Kante vor oder parallel zu den zeitaufgelösten Experimenten an FLASH (DESY, Hamburg) gemessen. Darüber hinaus wurden (bisher unveröffentlichte) Messungen am Synchrotron SOLEIL (Frankreich) durchgeführt, die in diese Arbeit eingeflossen sind und die Spin-Orbit-Aufspaltung der S 2p-Photolinie und ihres Satelliten zeigen, die am Freie-Elektronen-Laser nicht beobachtet wurde. Die Relaxation von 2-Thiouracil wurde in den letzten Jahren ausgiebig mit ultraschnellen Methoden im sichtbaren und ultravioletten Spektralbereich untersucht, die die ultraschnelle Natur des molekularen Prozesses nach der Photoanregung zeigen. Die ultraschnelle Spektroskopie, bei der die Elektronen des Kernniveaus untersucht werden, bietet einen ergänzenden Ansatz zu den üblichen optischen Techniken. Die Methode erhält ihre lokale Empfindlichkeit durch die stark lokalisierten Kernelektronen. Die Kernenergien und Kern-Valenz-Übergänge werden stark von lokalen Valenzladungs- und Geometrieänderungen beeinflusst, und frühere Studien haben diese Empfindlichkeit genutzt, um den molekularen Prozess zu untersuchen, der sich in der ultraschnellen Dynamik widerspiegelt. Wir haben eine Apparatur gebaut, die die Voraussetzungen für die Durchführung zeitaufgelöster Röntgenspektroskopie an Molekülen in der Gasphase bietet. Mit dieser Apparatur haben wir Anregungs-Abfrage-Elektronenspektroskopie an der S 2p-Kante von 2-Thiouracil an dem Freie-Elektronen-Laser FLASH2 durchgeführt. Zuerst triggert ein UV-Puls die Relaxationsdynamik und anschließend tastet ein Röntgenpuls das einzelne Schwefelatom im Inneren des Moleküls ab. Für die Analyse der Photoelektronenspektren habe ich eine Selbstrefernzierung der Photolinie implementiert, mit deren Hilfe der spektrale Jitter des FEL minimiert werden konnte. Dieser ist auf den zugrunde liegenden Prozess der selbstverstärkten spontanen Emission (SASE) zurückzuführen. Mit diesem Ansatz konnten wir nicht nur dynamische Veränderungen in der Bindungsenergie der Elektronen untersuchen, sondern auch ein oszillierendes Verhalten in der Verschiebung der beobachteten Photolinie feststellen, das wir mit einer nicht-adiabatischen Dynamik in Verbindung bringen, an der mehrere elektronische Zustände beteiligt sind. Außerdem konnten wir die UV-induzierte Verschiebung der Bindungsenergie mit dem lokalen Ladungsfluss am Schwefel in Verbindung bringen, der direkt mit dem elektronischen Zustand verbunden ist. Darüber hinaus zeigt die Analyse der Auger-Meitner-Elektronen, dass die in frühen Stadien der photoinduzierten Relaxation beobachteten Energieverschiebungen mit der Geometrieänderung des Moleküls zusammenhängen. Genauer gesagt korreliert der beobachtete Anstieg der kinetischen Energie der Auger-Meitner-Elektronen mit einer zuvor vorhergesagten Dehnung der C=S-Bindung. KW - thiouracil KW - ultrafast molecular dynamics KW - x-ray spectroscopy KW - Auger-Meitner electron spectroscopy KW - photoelectron spectroscopy KW - free-electron laser KW - FLASH KW - excited-state chemical shift KW - Thiouracil KW - ultraschnelle Moleküldynamik KW - Röntgenspektroskopie KW - Photoelektronenspektroskopie KW - pump-probe spectroscopy KW - Freie-Elektronen-Laser KW - Anregungs-Abfrage-Spektroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571636 ER - TY - THES A1 - Lever, Fabiano T1 - Probing the ultrafast dynamics of 2-Thiouracil with soft x-rays T1 - Untersuchung der ultraschnellen Dynamik von 2-Thiouracil mit weicher Röntgenstrahlung N2 - Understanding the changes that follow UV-excitation in thionucleobases is of great importance for the study of light-induced DNA lesions and, in a broader context, for their applications in medicine and biochemistry. Their ultrafast photophysical reactions can alter the chemical structure of DNA - leading to damages to the genetic code - as proven by the increased skin cancer risk observed for patients treated with thiouracil for its immunosuppressant properties. In this thesis, I present four research papers that result from an investigation of the ultrafast dynamics of 2-thiouracil by means of ultrafast x-ray probing combined with electron spectroscopy. A molecular jet in the gas phase is excited with a uv pulse and then ionized with x-ray radiation from a Free Electron Laser. The kinetic energy of the emitted electrons is measured in a magnetic bottle spectrometer. The spectra of the measured photo and Auger electrons are used to derive a picture of the changes in the geometrical and electronic configurations. The results allow us to look at the dynamical processes from a new perspective, thanks to the element- and site- sensitivity of x-rays. The custom-built URSA-PQ apparatus used in the experiment is described. It has been commissioned and used at the FL24 beamline of the FLASH2 FEL, showing an electron kinetic energy resolution of ∆E/E ~ 40 and a pump-probe timing resolution of 190 f s. X-ray only photoelectron and Auger spectra of 2-thiouracil are extracted from the data and used as reference. Photoelectrons following the formation a 2p core hole are identified, as well as resonant and non-resonant Auger electrons. At the L 1 edge, Coster-Kronig decay is observed from the 2s core hole. The UV-induced changes in the 2p photoline allow the study the electronic-state dynamics. With the use of an Excited-State Chemical Shift (ESCS) model, we observe a ultrafast ground-state relaxation within 250 f s. Furthermore, an oscillation with a 250 f s period is observed in the 2p binding energy, showing a coherent population exchange between electronic states. Auger electrons from the 2p core hole are analyzed and used to deduce a ultrafast C −S bond expansion on a sub 100 f s scale. A simple Coulomb-model, coupled to quantum chemical calculations, can be used to infer the geometrical changes in the molecular structure. N2 - Das Verständnis von lichtinduzierten, molekularen Prozessen ist über die Physik hinaus in einem breiten Kondext für Medizin und Biochemie relevant. Die ultraschnellen, photophysikalischen Reaktionen mancher Moleküle können die chemische Struktur von DNA verändern und somit genetischen Code schädigen. So führt zum Beispiel die UV-Anregung von Thionukleobasen zu Läsionen der DNA in den Zellen. Dementsprechend zeigen Patienten ein erhöhtes Hautkrebsrisiko, wenn sie im Rahmen einer immunsuppressiven Therapie mit Thiouracil behandelt werden. In dieser Dissertation stelle ich vier Forschungsarbeiten vor, in denen die ultraschnellen, intramolekularen Dynamiken von 2-Thiouracil mittels ultraschneller Anregungs-Abfrage(Pump-Probe)-Röntgenelektronenspektroskopie untersucht werden. Die relevanten molekularen Dynamiken werden stark durch das Schwefelatom des Thiouracils beeinflusst. Die Element- und Ortsempfindlichkeit der verwendeten Röntgenstrahlung erlauben es, diese Prozesse experimentell zu untersuchen. Dafür werden 2-Thiouracil-Moleküle thermisch in einem Molekularstrahl in die Gasphase freigesetzt. Nachdem die Moleküle mit einem UV-Puls angeregt wurden, erfolgt zeitversetzt die Abfrage mit einem Röntgenpuls, der die Moleküle ionisiert. Die kinetische Energie der emittierten Photo- und Augerelektronen wird mit einem Elektronenspektrometer vom Typ ‘Magnetische Flasche’ gemessen. Die Energiespektren dieser Elektronen werden verwendet, um ein Modell von den UV-lichtinduzierten Veränderungen der geometrischen und elektronischen Konfigurationen der Moleküle zu erhalten. Für diese Experimente wird erstmalig eine speziell angefertigte Apparatur namens URSA-PQ verwendet und beschrieben. Sie wurde an der Beamline FL24 des Freie Elektronenlaser (FEL) FLASH2 in Betrieb genommen und verwendet. Aus den Daten werden reine Röntgenphoto- und Augerelektronenspektren des Schwefelatoms von 2-Thiouracil extrahiert und als Referenz verwendet. Die 2p- Photoelektronen werden identifiziert, ebenso wie resonante und nicht-resonante Augerelektronen, die bei dem Zerfall des 2p-Kernlochs entstehen. Die UV-induzierten Veränderungen der 2p-Photolinie ermöglichen es, die Dynamik des elektronischen Zustands zu untersuchen. Unter Verwendung eines ESCS-Modells (Excited-State Chemical Shift) beobachten wir eine ultraschnelle Grundzustandsrelaxation innerhalb von 250 f s. Auger-Elektronen aus dem Zerfall des 2p-Kernlochs im UV-angeregten 2-Thiouracil werden ebenfalls analysiert. Die Änderung ihrer kinetischen Energie deutet auf eine ultraschnelle C − S-Bindungsexpansion auf einer Skala von unter 100 f s hin. Ein einfaches Coulomb-Modell, gekoppelt mit quantenchemischen Berechnungen, kann die geometrischen Veränderungen in der Molekülstruktur erklären. KW - Quantum KW - x-ray KW - photoelectron spectroscopy KW - thiouracil KW - nucleobases KW - Free Electron Laser KW - ultrafast KW - conical intersection KW - molecular dynamics KW - Freie-Elektronen-Laser KW - Quantum KW - konische Kreuzung KW - Molekulardynamik KW - Nukleobasen KW - Photoelektronenspektroskopie KW - Thiouracil KW - ultraschnell KW - Röntgenspektroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-555230 ER -