TY - THES A1 - Ebel, Kenny T1 - Quantification of low-energy electron induced single and double strand breaks in well-defined DNA sequences using DNA origami nanostructures T1 - Quantifizierung von DNA Einzel- und Doppelstrangbrüchen definierter DNA Sequenzen induziert durch niederenergetische Elektronen unter Verwendung von DNA Origami Nanostrukturen N2 - Ionizing radiation is used in cancer radiation therapy to effectively damage the DNA of tumors leading to cell death and reduction of the tumor tissue. The main damage is due to generation of highly reactive secondary species such as low-energy electrons (LEE) with the most probable energy around 10 eV through ionization of water molecules in the cells. A simulation of the dose distribution in the patient is required to optimize the irradiation modality in cancer radiation therapy, which must be based on the fundamental physical processes of high-energy radiation with the tissue. In the present work the accurate quantification of DNA radiation damage in the form of absolute cross sections for LEE-induced DNA strand breaks (SBs) between 5 and 20 eV is done by using the DNA origami technique. This method is based on the analysis of well-defined DNA target sequences attached to DNA origami triangles with atomic force microscopy (AFM) on the single molecule level. The present work focuses on poly-adenine sequences (5'-d(A4), 5'-d(A8), 5'-d(A12), 5'-d(A16), and 5'- d(A20)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. Additionally, DNA double strand breaks from a DNA hairpin 5'-d(CAC)4T(Bt-dT)T2(GTG)4 are examined for the first time and are compared with those of DNA single strands 5'-d(CAC)4 and 5'- d(GTG)4. The irradiation is made in the most likely energy range of 5 to 20 eV with an anionic resonance maximum around 10 eV independently of the DNA sequence. There is a clear difference between σSSB and σDSB of DNA single and double strands, where the strand break for ssDNA are always higher in all electron energies compared to dsDNA by the factor 3. A further part of this work deals with the characterization and analysis of new types of radiosensitizers used in chemoradiotherapy, which selectively increases the DNA damage upon radiation. Fluorinated DNA sequences with 2'-fluoro-2'-deoxycytidine (dFC) show an increased sensitivity at 7 and 10 eV compared to the unmodified DNA sequences by an enhancement factor between 2.1 and 2.5. In addition, light-induced oxidative damage of 5'-d(GTG)4 and 5'-d((CAC)4T(Bt-dT)T2(GTG)4) modified DNA origami triangles by singlet oxygen 1O2 generated from three photoexcited DNA groove binders [ANT994], [ANT1083] and [Cr(ddpd)2][BF4]3 illuminated in different experiments with UV-Vis light at 430, 435 and 530 nm wavelength is demonstrated. The singlet oxygen induced generation of DNA damage could be detected in both aqueous and dry environments for [ANT1083] and [Cr(ddpd)2][BF4]3. N2 - In der Radiotherapie wird ionisierende Strahlung verwendet, um die DNA in Tumorzellen wirksam zu schädigen. Der Hauptschaden ist auf die Erzeugung hochreaktiver Sekundärspezies wie niederenergetische Elektronen (LEE) durch Ionisierung von Wassermolekülen in den Zellen mit einer wahrscheinlichsten Energie um 10 eV zurückzuführen. Die Optimierung der Bestrahlungsmodalität in der Strahlentherapie beruht auf Simulationen der Dosisverteilung im menschlichen Körper, die auf fundamentale physikalische Prozesse zwischen hochenergetischer Strahlung mit dem Gewebe basieren. Die vorliegende Arbeit beschäftigt sich mit der exakten Quantifizierung von LEE-induzierten DNA-Strahlenschäden in Form von absoluten Wirkungsquerschnitten σSB für DNA-Strangbrüche (SBs) zwischen 5 und 20 eV mit Hilfe der DNA-Origami-Technik. Diese Methode verwendet wohl definierte DNA-Zielsequenzen gebunden an DNA-Origami Nanostrukturen, dessen Schädigung durch die Rasterkraftmikroskopie auf Einzelmolekülniveau untersucht werden kann. Ein großer Fokus liegt auf den Bestrahlungsexperimenten von Polyadeninsequenzen ((5'-d(A4), 5'-d(A8), 5'-d(A12), 5'-d(A16) und 5'-d(A20) unterschiedlicher Nukleotidanzahl) bestrahlt mit 5.0, 7.0, 8.4 und 10 eV Elektronen. Unabhängig von der DNA-Nukleotidlänge zeigen die Strangbruchquerschnitte für alle untersuchten Oligonukleotide ein Maximum um 7.0 eV Elektronenenergie. Diese DNA-Strangbrüche sind durch die anfängliche Bildung negativer Ionenresonanzen bedingt. Zusätzlich werden erstmals Wirkungsquerschnitte für DNA-Doppelstrangbrüche σDSB spezifischer Sequenz (5'- d(CAC)4T(Bt-dT)T2(GTG)4) ermittelt und mit den Wirkungsquerschnitten von DNA-Einzelstrangbrüchen σSSB (5'- d(CAC)4 und 5'-d(GTG)4) verglichen. Die Bestrahlungen erfolgen im Energiebereich von 5 bis 20 eV mit einem anionischen Resonanzmaximum um 10 eV unabhängig von der DNA-Sequenz. Es wird ein deutlicher Unterschied zwischen σSSB und σDSB von DNA-Einzel- und Doppelstrangbrüchen im Verhältnis von 3 zu 1 erhalten. Des Weiteren befasst sich ein großer Forschungsbereich in der Radiochemotherapie mit der Charakterisierung und Analyse neuer Radiosensibilisatoren, die den DNA-Schaden bei Bestrahlung selektiv erhöhen können. Dafür werden DNA-Sequenzen mit 2'-Fluor-2'-desoxycytidin (dFC) modifiziert, die eine erhöhte Empfindlichkeit mit einem Verstärkungsfaktor zwischen 2.1 und 2.5 bei 7 und 10 eV im Vergleich zu den nicht modifizierten DNA-Sequenzen zeigen. Außerdem können mit der DNA-Origami-Technik lichtinduzierte oxidative DNA-Schädigungen von 5'-d(GTG)4 und 5'- d(CAC)4T(Bt-dT)T2(GTG)4 durch hochreaktivem Singulett-Sauerstoff 1O2 untersucht werden. Der Singulett-Sauerstoff wird durch photoaktive DNA-Binder [ANT994], [ANT1083] und [Cr(ddpd)2][BF4]3 mit UV-Vis Licht bei Wellenlängen von 430, 435 und 530 nm gebildet, die sich auf den DNA-Origami Nanostrukturen nahe den Zielsequenzen zufällig binden. Die Erzeugung von DNA-Schäden konnte sowohl in wässriger als auch in kondensierter Umgebung durch [ANT1083] und [Cr(ddpd)2][BF4]3 nachgewiesen werden. KW - DNA damage KW - single strand break KW - double strand break KW - ionizing radiation KW - low-energy electrons KW - DNA origami KW - DNA origami KW - Einzelstrangbruch KW - Doppelstrangbruch KW - niederenergetische Elektronen KW - DNA Schädigung KW - ionisierende Strahlung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-504499 ER - TY - THES A1 - Schürmann, Robin Mathis T1 - Interaction of the potential DNA-radiosensitizer 8-bromoadenine with free and plasmonically generated electrons T1 - Wechselwikung des potentiellen DNA-Radiosensibilisators 8-Bromoadenin mit freien und plasmonisch erzeugten Elektronen N2 - In Germany more than 200.000 persons die of cancer every year, which makes it the second most common cause of death. Chemotherapy and radiation therapy are often combined to exploit a supra-additive effect, as some chemotherapeutic agents like halogenated nucleobases sensitize the cancerous tissue to radiation. The radiosensitizing action of certain therapeutic agents can be at least partly assigned to their interaction with secondary low energy electrons (LEEs) that are generated along the track of the ionizing radiation. In the therapy of cancer DNA is an important target, as severe DNA damage like double strand breaks induce the cell death. As there is only a limited number of radiosensitizing agents in clinical practice, which are often strongly cytotoxic, it would be beneficial to get a deeper understanding of the interaction of less toxic potential radiosensitizers with secondary reactive species like LEEs. Beyond that LEEs can be generated by laser illuminated nanoparticles that are applied in photothermal therapy (PTT) of cancer, which is an attempt to treat cancer by an increase of temperature in the cells. However, the application of halogenated nucleobases in PTT has not been taken into account so far. In this thesis the interaction of the potential radiosensitizer 8-bromoadenine (8BrA) with LEEs was studied. In a first step the dissociative electron attachment (DEA) in the gas phase was studied in a crossed electron-molecular beam setup. The main fragmentation pathway was revealed as the cleavage of the C-Br bond. The formation of a stable parent anion was observed for electron energies around 0 eV. Furthermore, DNA origami nanostructures were used as platformed to determine electron induced strand break cross sections of 8BrA sensitized oligonucleotides and the corresponding nonsensitized sequence as a function of the electron energy. In this way the influence of the DEA resonances observed for the free molecules on the DNA strand breaks was examined. As the surrounding medium influences the DEA, pulsed laser illuminated gold nanoparticles (AuNPs) were used as a nanoscale electron source in an aqueous environment. The dissociation of brominated and native nucleobases was tracked with UV-Vis absorption spectroscopy and the generated fragments were identified with surface enhanced Raman scattering (SERS). Beside the electron induced damage, nucleobase analogues are decomposed in the vicinity of the laser illuminatednanoparticles due to the high temperatures. In order to get a deeper understanding of the different dissociation mechanisms, the thermal decomposition of the nucleobases in these systems was studied and the influence of the adsorption kinetics of the molecules was elucidated. In addition to the pulsed laser experiments, a dissociative electron transfer from plasmonically generated ”hot electrons” to 8BrA was observed under low energy continuous wave laser illumination and tracked with SERS. The reaction was studied on AgNPs and AuNPs as a function of the laser intensity and wavelength. On dried samples the dissociation of the molecule was described by fractal like kinetics. In solution, the dissociative electron transfer was observed as well. It turned out that the timescale of the reaction rates were slightly below typical integration times of Raman spectra. In consequence such reactions need to be taken into account in the interpretation of SERS spectra of electrophilic molecules. The findings in this thesis help to understand the interaction of brominated nucleobases with plasmonically generated electrons and free electrons. This might help to evaluate the potential radiosensitizing action of such molecules in cancer radiation therapy and PTT. N2 - Mit deutschlandweit über 200.000 Todesfällen pro Jahr ist Krebs die zweithäufigste Todesursache. In der Krebstherapie werden häufig Strahlenund Chemotherapie kombiniert, da das Krebsgewebe durch die Gabe bestimmter Chemotherapeutika, z.B. halogenierte Nukleinbasen, gegenüber ionisierender Strahlung sensibilisiert wird. Die Wirkung dieser sogenannten Radiosensibilatoren lässt sich zumindest teilweise auf ihre Wechselwirkung mit niederenergetischen Elektronen zurückführen, welche in hoher Zahl entlang der Trajektorie hochenergetischer Teilchen oder Photonen erzeugt werden. In der Krebstherapie ist die DNA ein wichtiger Angriffspunkt, da schwere DNA-Schäden wie Doppelstrangbrüche zum Zelltod führen können. In der klinischen Praxis ist die Anzahl der eingesetzten meist zytotoxischen Radiosensibilisatoren relativ begrenzt. Zur Verbesserung der bestehenden Therapien durch den Einsatz von Medikamenten mit geringeren Nebenwirkungen, ist es notwendig die Wechselwirkungen zwischen potentiellen Radiosensibilisatoren und reaktiven Sekundärteilchen wie niederenergetischen Elektronen besser zu verstehen. Neben der Strahlentherapie werden niederenergetische Elektronen auch durch Laserbestrahlung von plasmonischen Nanopartikeln erzeugt, welche in der Photothermaltherapie (PTT) Anwendung finden. Die mögliche Anwendung von halogenierten Nukleinbasen zur Verbesserung der Photothermaltherapie ist jedoch bisher noch nicht in Erwägung gezogen worden. Im Rahmen dieser kumulativen Dissertation wird die Wechselwirkung des potentiellen Radiosensibilisators 8-Bromoadenin (8BrA) mit niederenergetischen Elektronen untersucht. Unter Verwendung eines gekreuzten Molekül-Elektronenstrahls wurde in einem ersten Schritt die dissoziative Elektronenanlagerung (DEA) an 8BrA untersucht. Dabei zeigte sich, dass der Hauptzerfallskanal in dem Aufbrechen der C-Br Bindung besteht. Darüberhinausgehend wurde bei der Anlagerung von Elektronen mit einer Energie von 0 eV ein stabiles 8BrA Anion beobachtet. Um den Einfluss der DEA-Resonanzen, die für freie Moleküle in der Gasphase beobachtet wurden, auf die elektroneninduzierten DNA-Strangbrüche zu untersuchen wurden DNA- Origami-Nanostrukturen mit Elektronen bestrahlt. Die DNAOrigami-Strukturen wurden sowohl mit 8BrA modifizierten Oligonukleotiden und der nicht modifizierten Kontrollsequenz bestückt und die Strangbruch Wirkungsquerschnitte in Abhängigkeit von der Elektronenenergie bestimmt. DEA-Prozesse hängen stark von dem umgebenden Medium ab. Aus diesem Grund wurden laserbestrahlte Gold-Nanopartikel (AuNPs) als Elektronenquellen auf der Nanoebene verwendet. Der Zerfall von bromierten und unmodifizierten Nukleinbasen wurde mit UV-Vis-Absorptions-Spektroskopie verfolgt, während die Identifizierung der entstandenen Fragmente über Oberflächenverstärkte Ramanstreuung (SERS) erfolgte. Neben dem elektroneninduzierten Schaden, werden die Nukleinbasen in der Umgebung der AuNPs durch die hohen Temperaturen auch thermisch zersetzt. Um diese verschiedenen Prozesse auseinander halten zu können, wurde die thermische Zersetzung auf den laserbestrahlten AuNPs detailliert untersucht und der Einfluss der Adsorptionskinetik herausgearbeitet. Elektroneninduzierte Reaktionen auf Nanopartikeln finden nicht nur bei Bestrahlung mit intensiven Laser-Pulsen statt. Ein dissoziativer Elektronentransfer auf 8BrA, der zum Aufbrechen der C-Br Bindung führt, konnte ebenfalls während der Bestrahlung mit einem kontinuierlichen Laser geringer Intensität mit SERS beobachtet werden. Mit Hilfe von fraktaler Kinetik konnten dabei die Reaktionen auf getrockneten Proben beschrieben werden. Auf diese Art wurde die Reaktion sowohl auf AuNPs als auch auf AgNPs als Funktion der Laserintensität und -Wellenlänge untersucht. Ebenfalls in Lösung konnte das Auftrennen der C-Br Bindung beobachtet werden, wobei die Zeitskalen der Reaktion ein wenig kürzer als die typischen Integrationszeiten bei Ramanmessungen waren. Aus diesem Grund müssen Dissoziative-ElektronenTransfer- Reaktionen bei der Interpretation von SERS Spektren mit in Betracht gezogen werden. Die Ergebnisse dieser kumulativen Doktorarbeit fördern das Verständnis der Wechselwirkungen zwischen bromierten Nukleinbasen mit freien und plasmonisch erzeugten Elektronen. Dies könnte dabei helfen das Potential von 8BrA als möglicher Radiosensibilisator besser beurteilen zu können. KW - DNA damage KW - Radiosensitization KW - dissociative electron attachment KW - nanoparticles KW - plasmonic catalysis KW - DNA-Schädigung KW - dissoziative Elektronen Anlagerung KW - Nanopartikel KW - plasmonische Katalyse Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407017 ER -