TY - THES A1 - Stahlhut, Frank T1 - Entwicklung neuer triphiler, fluorkohlenstofffreier Blockcopolymere und Untersuchung ihrer Eigenschaften für Multikompartiment-Mizellen T1 - Synthesis of new triphilic fluorocarbon -free block copolymers and analysis of their suitability as multicompartment micelles N2 - Neue Systeme für triphile, fluorkohlenstofffreie Blockcopolymere in Form von Acrylat-basierten thermoresponsiven Blockcopolymeren sowie Acrylat- bzw. Styrol-basierten Terblock-Polyelektrolyten mit unterschiedlich chaotropen Kationen des jeweiligen polyanionischen Blocks wurden entwickelt. Multikompartiment-Mizellen, mizellare Aggregate mit ultrastrukturiertem hydrophobem Mizellkern die biologischen Strukturen wie dem Humanalbumin nachempfunden sind, sollten bei der Selbstorganisation in wässriger Umgebung entstehen. Durch Verwendung apolarer und polarer Kohlenwasserstoff-Domänen anstelle von fluorophilen Fluorkohlenstoff-Domänen sollte erstmals anhand solcher triphilen Systeme nachgewiesen werden, ob diese in der Lage zur selektiven Aufnahme hydrophober Substanzen in unterschiedliche Domänen des Mizellkerns sind. Mit Hilfe von sequentieller RAFT-Polymerisation wurden diese neuen triphilen Systeme hergestellt, die über einen permanent hydrophilen, eine permanent stark hydrophoben und einen dritten Block verfügen, der durch externe Einflüsse, speziell die Induzierung eines thermischen Coil-to-globule-Übergangs bzw. die Zugabe von organischen, hydrophoben Gegenionen von einem wasserlöslichen in einen polar-hydrophoben Block umgewandelt werden kann. Als RAFT-Agens wurde 4-(Trimethylsilyl)benzyl(3-(trimethylsilyl)-propyl)-trithiocarbonat mit zwei unterschiedlichen TMS-Endgruppen verwendet, das kontrollierte Reaktions-bedingungen sowie die molekulare Charakterisierung der komplexen Copolymere ermöglichte. Die beiden Grundtypen der linearen ternären Blockcopolymere wurden jeweils in zwei 2 Modell-Systeme, die geringfügig in ihren chemischen Eigenschaften sowie in dem Blocklängenverhältnis von hydrophilen und hydrophoben Polymersegmenten variierten, realisiert und unterschiedliche Permutation der Blöcke aufwiesen. Als ersten Polymertyp wurden amphiphile thermoresponsive Blockcopolymere verwendet. Modell-System 1 bestand aus dem permanent hydrophoben Block Poly(1,3-Bis(butylthio)-prop-2-yl-acrylat), permanent hydrophilen Block Poly(Oligo(ethylenglykol)monomethyletheracrylat) und den thermoresponsiven Block Poly(N,N‘-Diethylacrylamid), dessen Homopolymer eine LCST-Phasenübergang (LCST, engl.: lower critical solution temperature) bei ca. 36°C aufweist. Das Modell-System 2 bestand aus dem permanent hydrophilen Block Poly(2-(Methylsulfinyl)ethylacrylat), dem permanent hydrophoben Block Poly(2-Ethylhexylacrylat) und wiederum Poly(N,N‘-Diethylacrylamid). Im ternären Blockcopolymer erhöhte sich, je nach Blocksequenz und relativen Blocklängen, der LCST-Übergang auf 50 – 65°C. Bei der Untersuchung der Selbstorganisation für die Polymer-Systeme dieses Typs wurde die Temperatur variiert, um verschieden mizellare Überstrukturen in wässriger Umgebung zu erzeugen bzw. oberhalb des LCST-Übergangs Multikompartiment-Mizellen nachzuweisen. Die Unterschiede in der Hydrophilie bzw. den sterischen Ansprüche der gewählten hydrophilen Blöcke sowie die Variation der jeweiligen Blocksequenzen ermöglichte darüber hinaus die Bildung verschiedenster Morphologien mizellarer Aggregate. Der zweite Typ basierte auf ein Terblock-Polyelektrolyt-System mit Polyacrylaten bzw. Polystyrolen als Polymerrückgrat. Polymere ionische Flüssigkeiten wurden als Vorlage der Entwicklung zweier Modell-Systeme genommen. Eines der beiden Systeme bestand aus dem permanent hydrophilen Block Poly(Oligo(ethylenglykol)monomethyletheracrylat, dem permanent hydrophoben Block Poly(2-Ethylhexylacrylat) sowie dem Polyanion-Block Poly(3-Sulfopropylacrylat). Die Hydrophobie des Polyanion-Blocks variierte durch Verwendung großer organischer Gegenionen, nämlich Tetrabutylammonium, Tetraphenylphosphonium und Tetraphenylstibonium. Analog wurde in einem weiteren System aus dem permanent hydrophilen Block Poly(4-Vinylbenzyltetrakis(ethylenoxy)methylether), dem permanent hydrophoben Block Poly(para-Methylstyrol) und Poly(4-Styrolsulfonat) mit den entsprechenden Gegenionen gebildet. Aufgrund unterschiedlicher Kettensteifigkeit in beiden Modell-Systemen sollte es bei der Selbstorganisation der mizellarer Aggregate zu unterschiedlichen Überstrukturen kommen. Mittels DSC-Messungen konnte nachgewiesen werden, dass für alle Modell-Systeme die Blöcke in Volumen-Phase miteinander inkompatibel waren, was eine Voraussetzung für Multikompartimentierung von mizellaren Aggregaten ist. Die Größe mizellarer Aggregate sowie der Einfluss externer Einflüsse wie der Veränderung der Temperatur bzw. der Hydrophobie und Größe von Gegenionen auf den hydrodynamischen Durchmesser mittels DLS-Untersuchungen wurden für alle Modell-Systeme untersucht. Die Ergebnisse zu den thermoresponsiven ternären Blockcopolymeren belegten , dass sich oberhalb der Phasenübergangstemperatur des thermoresponsiven Blocks die Struktur der mizellaren Aggregate änderte, indem der p(DEAm)-Block scheinbar kollabierte und so zusammen mit den permanent hydrophoben Block den jeweiligen Mizellkern bildete. Nach gewisser Equilibrierungszeit konnten bei Raumtemperatur dir ursprünglichen mizellaren Strukturen regeneriert werden. Hingegen konnte für die Terblock-Polyelektrolyt-Systeme bei Verwendung der unterschiedlich hydrophoben Gegenionen kein signifikanter Unterschied in der Größe der mizellaren Aggregate beobachtet werden. Zur Abbildung der mizellaren Aggregate mittels kryogene Transmissionselektronenmikroskopie (cryo-TEM) der mizellaren Aggregate war mit Poly(1,3-Bis(butylthio)-prop-2-yl-acrylat) ein Modell-System so konzipiert, dass ein erhöhter Elektronendichtekontrast durch Schwefel-Atome die Visualisierung ultrastrukturierter hydrophober Mizellkerne ermöglichte. Dieser Effekt sollte in den Terblock-Polyelektrolyt-Systemen auch durch die Gegenionen Tetraphenylphosphonium und Tetraphenylstibonium nachgestellt werden. Während bei den thermoresponsiven Systemen auch oberhalb des Phasenübergangs kein Hinweis auf Ultrastrukturierung beobachtet wurde, waren für die Polyelektrolyt-Systeme, insbesondere im Fall von Tetraphenylstibonium als Gegenion Überstrukturen zu erkennen. Der Nachweis der Bildung von Multikompartiment-Mizellen war für beide Polymertypen mit dieser abbildenden Methode nicht möglich. Die Unterschiede in der Elektronendichte einzelner Blöcke müsste möglicherweise weiter erhöht werden um Aussagen diesbezüglich zu treffen. Die Untersuchung von ortsspezifischen Solubilisierungsexperimenten mit solvatochromen Fluoreszenzfarbstoffen mittels „steady-state“-Fluoreszenzspektroskopie durch Vergleich der Solubilisierungsorte der Terblockcopolymere bzw. –Polyelektrolyte mit den jeweiligen Solubilisierungsorten von Homopolymer- und Diblock-Vorstufen sollten den qualitativen Nachweis der Multikompartimentierung erbringen. Aufgrund der geringen Mengen an Farbstoff, die für die Solubilisierungsexperimente eingesetzt wurden zeigten DLS-Untersuchungen keine störenden Effekte der Sonden auf die Größe der mizellaren Aggregate. Jedoch erschwerten Quench-Effekte im Falle der Polyelektrolyt Modell-Systeme eine klare Interpretation der Daten. Im Falle der Modell-Systeme der thermoresponsiven Blockcopolymere waren dagegen deutliche solvatochrome Effekte zwischen der Solubilisierung in den mizellaren Aggregaten unterhalb und oberhalb des Phasenübergangs zu erkennen. Dies könnte ein Hinweis auf Multikompartimentierung oberhalb des LCST-Übergangs sein. Ohne die Informationen einer Strukturanalyse wie z.B. der Röntgen- oder Neutronenkleinwinkelstreuung (SAXS oder SANS), kann nicht abschließend geklärt werden, ob die Solubilisierung in mizellaren hydrophoben Domänen des kollabierten Poly(N,N‘-Diethylacrylamid) erfolgt oder in einer Mischform von mizellaren Aggregaten mit gemittelter Polarität. N2 - New systems for triphilic fluorine-carbon-free block copolymers in the form of acrylate-based thermoresponsive block copolymers and acrylate- and styrene-based ternary block polyelectrolytes with different chaotropic cations of the respective polyanionic blocks have been developed. Multicompartment micelles, micellar aggregates with ultrastructured hydrophobic micelle core which are bio-inspired by biological structures like human serum albumin, should occur during the self-assembly in aqueous environment. By having nonpolar and polar hydrocarbon domains instead of fluorocarbon domains in these triphilic systems, it should be possible to demonstrate for the first time, whether they are capable of selectively uptaking hydrophobic substances in different hydrophobic domains of the micelle core. These new triphilic systems were prepared by using sequential RAFT polymerization. These polymers are based on a permanently hydrophilic polymer block; a permanent highly hydrophobic block and a third block which is sensitive to the result of external influences, especially the induction of a thermal coil-to-globule transition in the case of thermoresponsive block copolymers or adding organic hydrophobic counter ions in the case of block polyelectrolytes. The third block for each system can be converted from a water-soluble in a polar hydrophobic block due to external stimulus. The RAFT agent, 4- (trimethylsilyl) benzyl (3- (trimethylsilyl) propyl) trithiocarbonate, has two different TMS-labeled end groups, which enable controlled polymerization conditions and the exact molecular characterization of the complex copolymers. Each of the two basic types of linear ternary block copolymers, which were prepared for this work, were implemented in two 2 model systems that varied slightly in their chemical properties, as well as in the block length ratio of hydrophilic and hydrophobic polymer segments and different block sequences. The first polymer type is based on amphiphilic thermoresponsive block copolymers. Model system 1 consisted of the permanent hydrophobic block p(1,3-bis (butylthio) prop-2-yl acrylate), the permanently hydrophilic block p(oligo (ethylene glycol) mono methyl ether acrylate) and the thermoresponsive block p(N,N–diethyl acrylamide) whose homopolymer has a LCST (lower critical solution temperature) like phase transition approximately about 36°C. The model system 2 consisted of the permanent hydrophilic block p(2- (methylsulfinyl) ethyl acrylate), the permanently hydrophobic block p(2-ethylhexyl acrylate) and again p(N,N–diethyl acrylamide). The LCST is increased in ternary block copolymers to 50 - 65°C, depending on the block sequence and relative block lengths. To study the self-assembly of these two polymer systems, their aqueous micellar solutions where analyzed above and below LCST to produce different micellar superstructures in an aqueous environment and to prove the occurrence of multicompartment micelles above LCST. The differences in the hydrophilicity or the individual steric requirements of the chosen hydrophilic blocks as well as the variation of the respective block sequences lead additionally to different morphologies of micellar aggregates. The second type of polymers is based on ternary block polyelectrolytes with polyacrylates and polystyrenes as polymer backbone respectively. Polymeric ionic liquids were taken as role model for the development of two model systems of block polyelectrolytes. One of the two systems consisting of the permanently hydrophilic p(oligo (ethylene glycol) mono methyl ether acrylate), the permanent hydrophobic block p(2-ethylhexyl acrylate) and the polyanion block p(3-sulfopropyl acrylate) (= model system 3). The hydrophobicity of the polyanion blocks varied largely by using organic counter ions, namely tetrabutyl ammonium, tetraphenyl phosphonium and tetraphenyl stibonium. Analogously, model system 4 consists of a permanently hydrophilic block p(4-vinylmethoxybenzyltetrakis (oxyethylene) ether), a permanently hydrophobic block p(para-methyl styrene) and p(4-styrene sulfonate) formed with the corresponding counter ions. Due to different chain stiffness in both model systems there should be different superstructures of micellar aggregates in aqueous solution. DSC (differential scanning calorimetry) measurements could demonstrate that the all polymer blocks for each modell system were incompatible with each other in bulk phase. This property is a prerequisite for ultra-structured hydrophobic cores of micellar aggregates. The influence of external factors such as change of temperature or change of hydrophobicity and size of counter ions on the size of micellar aggregates for all model systems was examined by DLS measurements. The results on the thermoresponsive ternary block copolymers showed that above the phase transition temperature of the thermo-responsive block the structure of micellar aggregates changed because the p(N,N–diethyl acrylamide) block apparently collapsed formed a subdivided micellar core together with the permanently hydrophobic block. Some equilibration time for the thermoresponsive block copolymer systems were needed to ensure that heoriginal micellar structures could be regenerated after cooling heated auqeous micellar solutions to room temperature. However, for the ternary block polyelectrolytes, there was no significant difference in the size of the micellar aggregates due to the exchange of counter ions which differ by their hydrophobicity. For imaging the micellar aggregates and especially multicompartment micelles by means of cryogenic transmission electron microscopy (cryo-TEM), the model system 1 with p(1,3-bis (butylthio) -prop-2-yl acrylate) as permanently hydrophobic block was specifically designed so that the increased electron density contrast by sulfur atoms should enable the visualization of multicompartment micelles. This effect should be readjusted in the ternary block polyelectrolyte systems by the counter ions tetraphenyl phosphonium and tetraphenyl stibonium. While in the thermoresponsive block copolymer systems it was possible to observe new kinds of micellar aggregates above LCST, there was no indication on ultrastructuring in the micellar cores for all analyzed systems. Otherwise by using tetraphenyl stibonium counter ions in block polyelectrolyte systems, some kind of ultrastructured micellar aggregates with seemingly subdivided micellar cores could be observed. The detection of the formation of multicompartment micelles was not possible for both types of polymers with this direct imaging method. The differences in the electron density of individual blocks might have to be further increased to make statements concerning the self-assembly into multicompartment micelles. Site-specific solubilization experiments with solvatochromic fluorescent dyes by using steady-state fluorescence spectroscopy should provide the qualitative evidence of multicompartment micelles. The selective solubilization areas of different kinds of substances in self-assembled structures of all ternary block copolymers and ternary polyelectrolytes were compared with the solubilization areas in their respective homopolymer and diblock precursors. Because of the small amounts of dye that have been used for the solubilization DLS measurements showed no interfering effects of the probes on the size of the micellar aggregates. However, quenching effects made a clear interpretation of the data in the case of polyelectrolyte model systems difficult. In the case of model systems 1 and 2 a change of the solubilization areas of fluorescent dyes due to the occurrence significant solvatochromic effects (stokes shifts) above LCST could be observed. The effect was reversibel. This could be an indication that the micellar aggregates self-assemble into multicompartment micelles above the LCST transition. Without the information of a structural analysis such as the small angle x-ray scattering or small angle neutron scattering (SAXS or SANS), it cannot be conclusively clarified whether the solubilization occurs in micellar hydrophobic domains of the collapsed p(N,N–diethyl acrylamide), or in a mixed form of micellar aggregates with mixed polarity. KW - Blockcopolymere KW - RAFT KW - Multikompartiment-Mizellen KW - cryo-TEM KW - Solubilisierung KW - Fluoereszenzsonden KW - block copolymers KW - triphilic KW - RAFT KW - multicompartment micelles KW - cryo-TEM KW - fluorescent dyes KW - fluorescence probe experiments KW - triphil Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96299 SP - iv, 191 ER - TY - THES A1 - Miasnikova, Anna T1 - New hydrogel forming thermo-responsive block copolymers of increasing structural complexity T1 - Neue Hydrogel-bildende thermisch schaltbare Blockcopolymere von zunehmender struktureller Komplexität N2 - This work describes the synthesis and characterization of stimuli-responsive polymers made by reversible addition-fragmentation chain transfer (RAFT) polymerization and the investigation of their self-assembly into “smart” hydrogels. In particular the hydrogels were designed to swell at low temperature and could be reversibly switched to a collapsed hydrophobic state by rising the temperature. Starting from two constituents, a short permanently hydrophobic polystyrene (PS) block and a thermo-responsive poly(methoxy diethylene glycol acrylate) (PMDEGA) block, various gelation behaviors and switching temperatures were achieved. New RAFT agents bearing tert-butyl benzoate or benzoic acid groups, were developed for the synthesis of diblock, symmetrical triblock and 3-arm star block copolymers. Thus, specific end groups were attached to the polymers that facilitate efficient macromolecular characterization, e.g by routine 1H-NMR spectroscopy. Further, the carboxyl end-groups allowed functionalizing the various polymers by a fluorophore. Because reports on PMDEGA have been extremely rare, at first, the thermo-responsive behavior of the polymer was investigated and the influence of factors such as molar mass, nature of the end-groups, and architecture, was studied. The use of special RAFT agents enabled the design of polymer with specific hydrophobic and hydrophilic end-groups. Cloud points (CP) of the polymers proved to be sensitive to all molecular variables studied, namely molar mass, nature and number of the end-groups, up to relatively high molar masses. Thus, by changing molecular parameters, CPs of the PMDEGA could be easily adjusted within the physiological interesting range of 20 to 40°C. A second responsivity, namely to light, was added to the PMDEGA system via random copolymerization of MDEGA with a specifically designed photo-switchable azobenzene acrylate. The composition of the copolymers was varied in order to determine the optimal conditions for an isothermal cloud point variation triggered by light. Though reversible light-induced solubility changes were achieved, the differences between the cloud points before and after the irradiation were small. Remarkably, the response to light differed from common observations for azobenzene-based systems, as CPs decreased after UV-irradiation, i.e with increasing content of cis-azobenzene units. The viscosifying and gelling abilities of the various block copolymers made from PS and PMDEGA blocks were studied by rheology. Important differences were observed between diblock copolymers, containing one hydrophobic PS block only, the telechelic symmetrical triblock copolymers made of two associating PS termini, and the star block copolymers having three associating end blocks. Regardless of their hydrophilic block length, diblock copolymers PS11 PMDEGAn were freely flowing even at concentrations as high as 40 wt. %. In contrast, all studied symmetrical triblock copolymers PS8-PMDEGAn-PS8 formed gels at low temperatures and at concentrations as low as 3.5 wt. % at best. When heated, these gels underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurs. The gel-sol transition shifted to markedly higher transition temperatures with increasing length of the hydrophilic inner block. This effect increased also with the number of arms, and with the length of the hydrophobic end blocks. The mechanical properties of the gels were significantly altered at the cloud point and liquid-like dispersions were formed. These could be reversibly transformed into hydrogels by cooling. This thesis demonstrates that high molar mass PMDEGA is an easily accessible, presumably also biocompatible and at ambient temperature well water-soluble, non-ionic thermo-responsive polymer. PMDEGA can be easily molecularly engineered via the RAFT method, implementing defined end-groups, and producing different, also complex, architectures, such as amphiphilic triblock and star block copolymers, having an analogous structure to associative telechelics. With appropriate design, such amphiphilic copolymers give way to efficient, “smart” viscosifiers and gelators displaying tunable gelling and mechanical properties. N2 - Diese Arbeit befasst sich mit der RAFT-vermittelten Synthese und Charakterisierung von stimuli-empfindlichen Polymeren und ihrer Selbstorganisation zu „intelligenten” Hydrogelen. Die Hydrogele wurden so entwickelt, dass sie bei niedrigen Temperaturen stark quellen, bei Temperaturerhöhung jedoch reversibel in einem hydrophoben, kollabierten Zustand umgewandelt werden. Mit dem permanent hydrophoben Polystyrol (PS) und dem hydrophilen, thermisch schaltbaren Poly(methoxy-diethylen¬glycol-acrylat) (PMDEGA) als Bausteine, wurden unterschiedliche Gelierungsverhalten und thermische Übergangstemperaturen erreicht. Zur Synthese von Diblock-, symmetrischen Triblock- und dreiarmigen Sternblock-Copolymeren wurden neue funktionelle Kettenüberträger entwickelt. Diese gestatteten es, tert-butyl Benzoeester und Benzoesäure Endgruppen in die Polymere einzubauen, die einerseits eine effiziente Analyse mittels Routine 1H-NMR und darüber hinaus eine spätere Funktionalisierung der Endgruppen mit einer Fluoreszenzsonde ermöglichten. Da über PMDEGA kaum Daten vorlagen, wurde der Einfluss von Molekulargewicht, Endgruppen und Architektur auf das thermo-responsive Verhalten untersucht. Die speziellen Kettenüberträger ermöglichten es, gezielt hydrophobe wie hydrophile Endgruppen in die Polymere einzuführen. Die Trübungspunkte der wässerigen Lösungen von PMDEGA zeigten sich bis zu relativ hohen molaren Massen abhängig gegenüber allen untersuchten Variablen, nämlich dem Molekulargewicht, der Art und Zahl von Endgruppen. Durch Variation der diversen Parameter ließ sich die Schalttemperatur von PMDEGA in physiologisch relevanten Temperaturbereich von 20 bis 40 °C einstellen. Um die Polymere für einen zweiten Stimulus, nämlich Licht, empfindlich zu machen, wurden Azobenzol-funktionalisierte Acrylate synthetisiert und statistisch mit MDEGA copolymerisiert. Die Zusammensetzung der Polymeren wurde variiert und das isotherme Schalten der Löslichkeit durch Licht untersucht. Obwohl ein reversibles Schalten erreicht wurde, waren die Unterschiede zwischen den Trübungstemperaturen von UV-Licht bestrahlten und unbestrahlten Proben nur gering. Interessanterweise senkte die UV-Bestrahlung, d.h. ein erhöhter Gehalt von cis-Azobenzol-Gruppen, die Trübungstemperaturen herab. Dies ist genau umgekehrt als für azobenzolbasierten Systeme klassisch beschrieben. Die Gelbildung der verschiedenen Blockcopolymere von PS und PMDEGA wurde mittels Rheologie untersucht. Dabei traten deutliche Unterschiede auf, zwischen dem Gelierungsverhalten der Diblockcopolymere, die nur einen PS Block enthalten, dem der symmetrischen Triblockcopolymere, die zwei assoziative PS Endblöcken besitzen, und dem der Sternpolymere, die drei assoziative PS Blöcke aufweisen. Unabhängig von der Länge des hydrophilen Blockes, bilden Diblockcopolymere des Typs PS11-PMDEGAn keine Gele, sondern selbst bei hohen Konzentrationen von 40 Gew. % Lösungen. Im Gegensatz dazu bildeten die Triblockcopolymere des Typs PS8-PMDEGAn-PS8 Gele bei niedrigen Temperaturen, vereinzelt schon ab 3.5 wt. %. Mit steigender Temperatur, tritt bereits unterhalb des Trübungspunktes für diese Systeme ein Gel-Sol Übergang auf. Der Gel-Sol Übergang bewegt sich zu höheren Temperaturen mit steigende Länge des hydrophilen inneren Blocks. Dieser Trend verstärkt sich mit zunehmender Anzahl von Endblöcken und deren Länge. An der Trübungstemperatur veränderten sich die mechanischen Eigenschaften aller Gele signifikant und die gebildeten flüssigen Dispersionen ließen sich reversibel beim Abkühlen wieder zu Gel schalten. Diese Arbeit, zeigt dass PMDEGA ein bei niedrigen Temperaturen gut wasserlösliches, nicht-ionisches, thermisch-schaltbares und wahrscheinlich biokompatibles Polymer ist. PMDEGA liest sich einfach mittels den RAFT-Verfahren molekular maßschneiden, mit spezifischen Endgruppen und komplexen Polymerarchitekturen. Solche amphiphilen Triblock- und Sternblock-Copolymeren hoher Molmasse, wirken als assoziative Telechele. Daher eigenen sich bei entsprechendem Design diese amphiphilen Blockcopolymere als effiziente Verdicker und Gelbildner mit einstellbaren mechanischen und thermischen Eigenschaften. KW - Blockcopolymere KW - Selbstorganisation KW - thermisch schaltbar KW - LCST KW - RAFT KW - block copolymers KW - self-assembly KW - thermoresponsive KW - LCST KW - RAFT Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59953 ER - TY - THES A1 - Valverde Serrano, Clara T1 - Self-assembly behavior in hydrophilic block copolymers T1 - Selbstorganisation von hydrophilen Blockcopolymeren N2 - Block copolymers are receiving increasing attention in the literature. Reports on amphiphilic block copolymers have now established the basis of their self-assembly behavior: aggregate sizes, morphologies and stability can be explained from the absolute and relative block lengths, the nature of the blocks, the architecture and also solvent selectiveness. In water, self-assembly of amphiphilic block copolymers is assumed to be driven by the hydrophobic. The motivation of this thesis is to study the influence on the self-assembly in water of A b B type block copolymers (with A hydrophilic) of the variation of the hydrophilicity of B from non-soluble (hydrophobic) to totally soluble (hydrophilic). Glucose-modified polybutadiene-block-poly(N-isopropylacrylamide) copolymers were prepared and their self-assembly behavior in water studied. The copolymers formed vesicles with an asymmetric membrane with a glycosylated exterior and poly(N-isopropylacrylamide) on the inside. Above the low critical solution temperature (LCST) of poly(N-isopropylacrylamide), the structure collapsed into micelles with a hydrophobic PNIPAM core and glycosylated exterior. This collapse was found to be reversible. As a result, the structures showed a temperature-dependent interaction with L-lectin proteins and were shown to be able to encapsulate organic molecules. Several families of double hydrophilic block copolymers (DHBC) were prepared. The blocks of these copolymers were biopolymers or polymer chimeras used in aqueous two-phase partition systems. Copolymers based on dextran and poly(ethylene glycol) blocks were able to form aggregates in water. Dex6500-b-PEG5500 copolymer spontaneously formed vesicles with PEG as the “less hydrophilic” barrier and dextran as the solubilizing block. The aggregates were found to be insensitive to the polymer's architecture and concentration (in the dilute range) and only mildly sensitive to temperature. Variation of the block length, yielded different morphologies. A longer PEG chain seemed to promote more curved aggregates following the inverse trend usually observed in amphiphilic block copolymers. A shorter dextran promoted vesicular structures as usually observed for the amphiphilic counterparts. The linking function was shown to have an influence of the morphology but not on the self-assembly capability in itself. The vesicles formed by dex6500-b-PEG5500 showed slow kinetics of clustering in the presence of Con A lectin. In addition both dex6500-b-PEG5500 and its crosslinked derivative were able to encapsulate fluorescent dyes. Two additional dextran-based copolymers were synthesized, dextran-b-poly(vinyl alcohol) and dextran-b-poly(vinyl pyrrolidone). The study of their self-assembly allowed to conclude that aqueous two-phase systems (ATPS) is a valid source of inspiration to conceive DHBCs capable of self-assembling. In the second part the principle was extended to polypeptide systems with the synthesis of a poly(N-hydroxyethylglutamine)-block-poly(ethylene glycol) copolymer. The copolymer that had been previously reported to have emulsifying properties was able to form vesicles by direct dissolution of the solid in water. Last, a series of thermoresponsive copolymers were prepared, dextran-b-PNIPAMm. These polymers formed aggregates below the LCST. Their structure could not be unambiguously elucidated but seemed to correspond to vesicles. Above the LCST, the collapse of the PNIPAM chains induced the formation of stable objects of several hundreds of nanometers in radius that evolved with increasing temperature. The cooling of these solution below LCST restored the initial aggregates. This self-assembly of DHBC outside any stimuli of pH, ionic strength, or temperature has only rarely been described in the literature. This work constituted the first formal attempt to frame the phenomenon. Two reasons were accounted for the self-assembly of such systems: incompatibility of the polymer pairs forming the two blocks (enthalpic) and a considerable solubility difference (enthalpic and entropic). The entropic contribution to the positive Gibbs free energy of mixing is believed to arise from the same loss of conformational entropy that is responsible for “the hydrophobic effect” but driven by a competition for water of the two blocks. In that sense this phenomenon should be described as the “hydrophilic effect”. N2 - Blockcopolymere erfahren ein stetig wachsendes Interesse, was an der steigenden Anzahl an Publikationen zu diesem Thema erkennbar ist. Zahlreiche Studien zu amphiphilen Blockcopolymeren haben dabei einige grundlegende Erkenntnisse über deren chemisches und physikalisches Verhalten, vor allem über die Selbstorganisation, hervorgebracht. So können die Größe, die verschiedenen Morphologien und auch die Stabilität der gebildeten Aggregate anhand der relativen und absoluten Blocklängen, die chemischen Struktur der Blöcke, der molekularen Architektur und der Eigenschaften des verwendeten Lösungsmittel erklärt werden. Im speziellen Fall des Wassers als Lösungsmittel bist die Selbstorganisation amphiphiler Blockcopolymere durch den hydrophoben Effekt bedingt. Dieser Arbeit liegt das Interesse an der Selbstorganisation in wässrigem Medium von Blockcopolymeren des Typs A-b-B mit A als hydrophilem Block und B als Block mit variierender Hydrophilie bzw. Hydrophpobie von unlöslich bis vollständig löslich zugrunde. Durch Variation dieser Eigenschaften von Block B soll dessen Einfluss auf das Selbstorganisationsverhalten untersucht werden. Dazu wurden mit Glucose modifizierte Polybutadien-block-Poly(N-Isopropylacrylamid)-Copolymere hergestellt und deren Selbstorganisation in Wasser untersucht. Die Copolymere bilden Vesikel mit einer asymmetrischen Membran, wobei im äußeren Bereich glycolysierte Gruppen und im inneren Bereich Poly(N-Isopropylacrylamid) (PNIPAM) vorliegen. Beim Überschreiten der low critical solution temperature (LCST) kollabiert die vesikuläre Struktur unter Bildung von Mizellen mit einem hydrophoben PNIPAM-Mizellinneren und nach außen gerichteten glycolysierten Blöcken. Diese strukturelle Umwandlung ist reversibel. Die Strukturen zeigten außerdem eine temperaturabhängige Wechselwirkung mit L-Lectin-Proteinen und die Möglichkeit zur Einkapselung organischer Moleküle konnte belegt werden. Des weiteren wurden verschiedene Gruppen von Blockcopolymeren mit zwei hydrophilen Blöcken synthetisiert (double hydrophilic block copolymers – DHBC). Die Blöcke dieser Systeme waren entweder Biopolymere oder Polymerchimäre, die in wässrigen Zwei-Phasen-Trennverfahren eingesetzt werden. Polymere, die auf Dextran- und Poly(ethylenglycol)-Blöcken basieren, zeigen Aggregatbildung in wässriger Phase. Dex6500-b-PEG5500 bildet spontan Vesikel mit PEG als „weniger hydrophilem“ Bestandteil und Dextran als löslichem Block. Die Bildung dieser Vesikel zeigte keine Emfpindlichkeit gegenüber einer Veränderung der Polymerarchitektur und der Konzentration, und nur eine geringe Sensitivität gegenüber Temperaturänderungen. Veränderungen der Blocklängen dagegen beeinflussten die Selbstorganisation und führten zu unterschiedlichen Morphologien. Längere PEG-Blöcke bevorzugten dabei die Bildung eher gekrümmter Aggregate, entgegen dem Trend, der gewöhnlicherweise für amphiphile Blockcopolymere beobachtet wird. Die Verkürzung des Dextran-Blocks fördert die Ausbildung vesikulärer Strukturen, was dem Verhalten der amphiphilen Gegenspieler der DHBC-Systeme entspricht. Die funktionelle Gruppe zur Verbindung der beiden Blöcke hat zwar einen Einfluss auf die Morphologie der gebildeten Aggregate, nicht jedoch auf die eigentliche Fähigkeit der Systeme zur Selbstorganisation. Die Dex6500-b-PEG5500-Vesikel wiesen zudem eine langsame Bildungskinetik in Gegenwart von Con-A-Lectin auf. Des Weiteren waren sowohl Dex6500-b-PEG5500 als auch das quervernetzte Derivate dieses Copolymers in der Lage, Fluoreszenzfarbstoffe einzulagern. Um zu zeigen, dass wässrige Zwei-Phasen-Systeme (aqueous two phase systems – ATPS) eine belastbare Grundlage für die Untersuchung und Entwicklung selbstorganisierender DHBC-Systeme sind, wurden weitere Dextran-basierte Copolymere synthetsisiert: Dextran-b-Poly(vinylalokohol) und Detran-b-Poly(vinylpyrrolidon). In einem zweiten Teil dieser Arbeit wurde das zuvor erarbeitete Prinzip auf auf Polypeptidsysteme ausgeweitet. Dazu wurde ein Poly(N-Hydroxyethylglutamin)-block-Poly(ethylenglycol)-Copolymer hergestellt. Dieses Copolymer, dessen emulgierenden Eigenschaften bereits bekannt waren, wies unmittelbar nach Lösung des Feststoffes in Wasser Vesikelbildung auf. In einem dritten Teil der Studie wurden thermoresponsive Copolymere hergestellt und untersucht: Dextran-b-PNIPAMm. Unterhalb der LCST konnte die Bildung von Aggregaten nachgewiesen werden, deren Struktur nicht zweifelsfrei entschlüsselt werden konnte, wobei jedoch zahlreiche Hinweise auf eine vesikuläre Struktur hindeuten. Oberhalb der LCST wurde durch die Kollabierung der PNIPAM-Ketten die Bildung stabiler Strukturen mit Radien von mehreren hundert Nanometern induziert, deren weitere Entwicklung durch eine weitere Temperaturerhöhung gefördert werden konnte. Durch Rückkühlung in den Temperaturebereich unterhalb der LCST konnten die zuvor beobachteten Aggregate reversibel zurückgebildet werden. Das Selbstorganisationsverhalten von DHBC, unabhängig vom Einfluss des pH-Werts, der Ionenstärke oder der Temperatur are bisher nur in sehr geringem Umfang Gegenstand wissenschaftlicher Veröffentlichungen. Diese Arbeit stellt damit den ersten umfassenden Beitrag zur systematischen Erarbeitung dieses Phänomens dar. Es konnten dabei zwei Ursachen für die beobachteten Selbstorganisationseffekte bestimmt werden: die Inkompatibilität der beiden Polymerblöcke (enthalpischer Effekt) und der Unterschied in deren Löslichkeit (enthalpische und entropische Effekte). Der entropische Beitrag zur positiven Gibbs’schen Freien Mischungsenergie wird dem selben Verlust konformativer Entropie zugeordnet, der auch für den hydrophoben Effekt verantwortlich ist, allerdings angetrieben durch einen Wettbewerb der beiden Polymerblöcke um das Wasser. In diesem Sinne kann man das beobachtete Phänomen als „hydrophilen Effekt“ bezeichnen. KW - Selbstorganisation KW - Blockcopolymere KW - hydrophil KW - self-assembly KW - copolymers KW - hydrophilic Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-54163 ER - TY - THES A1 - Garnier, Sébastien T1 - Novel amphiphilic diblock copolymers by RAFT-polymerization, their self-organization and surfactant properties T1 - Neue Amphiphile Diblockcopolymere mittels RAFT-Polymerisation, ihre Aggregations- und Tensideigenschaften N2 - The Reversible Addition Fragmentation Chain Transfer (RAFT) process using the new RAFT agent benzyldithiophenyl acetate is shown to be a powerful polymerization tool to synthesize novel well-defined amphiphilic diblock copolymers composed of the constant hydrophobic block poly(butyl acrylate) and of 6 different hydrophilic blocks with various polarities, namely a series of non-ionic, non-ionic comb-like, anionic and cationic hydrophilic blocks. The controlled character of the polymerizations was supported by the linear increase of the molar masses with conversion, monomodal molar mass distributions with low polydispersities and high degrees of end-group functionalization. The new macro-surfactants form micelles in water, whose size and geometry strongly depend on their composition, according to dynamic and static light scattering measurements. The micellization is shown to be thermodynamically favored, due to the high incompatibility of the blocks as indicated by thermal analysis of the block copolymers in bulk. The thermodynamic state in solution is found to be in the strong or super strong segregation limit. Nevertheless, due to the low glass transition temperature of the core-forming block, unimer exchange occurs between the micelles. Despite the dynamic character of the polymeric micellar systems, the aggregation behavior is strongly dependent on the history of the sample, i.e., on the preparation conditions. The aqueous micelles exhibit high stability upon temperature cycles, except for an irreversibly precipitating block copolymer containing a hydrophilic block exhibiting a lower critical solution temperature (LCST). Their exceptional stability upon dilution indicates very low critical micelle concentrations (CMC) (below 4∙10-4 g∙L-1). All non-ionic copolymers with sufficiently long solvophobic blocks aggregated into direct micelles in DMSO, too. Additionally, a new low-toxic highly hydrophilic sulfoxide block enables the formation of inverse micelles in organic solvents. The high potential of the new polymeric surfactants for many applications is demonstrated, in comparison to reference surfactants. The diblock copolymers are weakly surface-active, as indicated by the graduate decrease of the surface tension of their aqueous solutions with increasing concentration. No CMC could be detected. Their surface properties at the air/water interface confer anti-foaming properties. The macro-surfactants synthesized are surface-active at the interface between two liquid phases, too, since they are able to stabilize emulsions. The polymeric micelles are shown to exhibit a high ability to solubilize hydrophobic substances in water. N2 - Amphiphile sind Moleküle, die aus einem hydrophilen und einem hydrophoben Molekülteil aufgebaut sind. Beispiele für Amphiphile sind Tenside, deren makromolekulares Pendant amphiphile Block-Copolymere sind, die häufig auch als Makro-Tenside bezeichnet sind. Ihre Lösungseigenschaften in einem selektiven Lösungsmittel, i.e., ein für einen Block gutes und für den anderen schlechtes Lösungsmittel, sind analog zu denen von Tensiden. Die Unverträglichkeit der Polymersegmente führt zu einer von hydrophoben Wechselwirkungen getriebenen Mikrophasenseparation, d.h. zur Selbstorganisation der amphiphilen Makromoleküle zu Mizellen unterschiedlichster Form, während die kovalente Bindung zwischen den Blöcken eine Makrophasenseparation verhindert. Aufgrund ihres besonderen strukturellen Aufbaus adsorbieren Makro-Tenside an Grenzflächen, was zahlreiche Anwendungen, z.B. zur (elektro)sterischen Stabilisierung von Emulsionen und Dispersionen findet. Die vorliegende Arbeit demonstriert, dass die neuen kontrollierten radikalischen Polymerisationen wie die RAFT-Methode („Reversible Addition Fragmentation Chain Transfer“) für die Synthese von neuen wohldefinierten amphiphilen Diblock-Copolymerstrukturen sehr gut geeignet sind. Eine Reihe von neuen amphiphilen Diblock-Copolymeren wurde mittels RAFT synthetisiert, mit einem konstanten hydrophoben Block und verschiedenen hydrophilen Blöcken unterschiedlichster Polaritäten. Die engen Molmassenverteilungen und der lineare Aufstieg der Molmassen mit dem Umsatz belegen den kontrollierten Charakter der Polymerisation. Die thermodynamisch favorisierte Selbstorganisation der synthetisierten Blockcopolymere in Wasser führt zur Bildung von Mizellen, deren Eigenschaften aber von der Präparationsmethode stark abhängig sind. Korrelationen zwischen den Mizelleigenschaften und der Blockcopolymerstruktur zeigen, dass die Mizellgröße vor allem von der Länge des hydrophoben Blocks kontrolliert wird, wohindagegen die Natur des hydrophilen Blocks der entscheidende Faktor für die Mizellgeometrie ist. Die gebildeten Mizellen sind besonders stabil gegenüber Verdünnung und Temperaturzyklen, was ein großer Vorteil für eventuelle Anwendungen ist. Wegen der niedrigen Glasübergangstemperatur des hydrophoben Blocks findet ein Austausch von Makromolekülen zwischen den Mizellen statt, d.h. es handelt sich um dynamische Mizellsysteme. Das Potential der neuen Makrotenside für Anwendungen wurde untersucht. Die Polymermizellen zeigen eine hohe Kapazität wasserunlösliche Substanzen in Wasser zu solubilisieren. Die Blockcopolymere sind grenzflächenaktiv, d.h. sie adsorbieren an Wasser / Luft oder Wasser / Öl Grenzflächen. Entsprechend sind die Blockcopolymere in der Lage, Emulsionen zu stabilisieren oder als Antischaumsubstanzen zu wirken. KW - Blockcopolymere KW - Amphiphile KW - Polymertenside KW - RAFT-Polymerisation KW - Grenzflächenaktivität KW - Amphiphilic diblock copolymers KW - RAFT-Polymerization KW - Surfactants Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-6395 ER - TY - THES A1 - Justynska, Justyna T1 - Towards a library of functional block copolymers : synthesis and colloidal properties T1 - Hin zu einer Bibliothek von funktionalen Blockcopolymeren : Synthese und kolloidale Eigenschaften N2 - Understanding the principles of self-organisation exhibited by block copolymers requires the combination of synthetic and physicochemical knowledge. The ability to synthesise block copolymers with desired architecture facilitates the ability to manipulate their aggregation behaviour, thus providing the key to nanotechnology. Apart from relative block volumes, the size and morphology of the produced nanostructures is controlled by the effective incompatibility between the different blocks. Since polymerisation techniques allowing for the synthesis of well-defined block copolymers are restricted to a limited number of monomers, the ability to tune the incompatibility is very limited. Nevertheless, Polymer Analogue Reactions can offer another possibility for the production of functional block copolymers by chemical modifications of well-defined polymer precursors. Therefore, by applying appropriate modification methods both volume fractions and incompatibility, can be adjusted. Moreover, copolymers with introduced functional units allow utilization of the concept of molecular recognition in the world of synthetic polymers. The present work describes a modular synthetic approach towards functional block copolymers. Radical addition of functional mercaptanes was employed for the introduction of diverse functional groups to polybutadiene-containing block copolymers. Various modifications of 1,2-polybutadiene-poly(ethylene oxide) block copolymer precursors are described in detail. Furthermore, extension of the concept to 1,2-polybutadiene-polystyrene block copolymers is demonstrated. Further investigations involved the self-organisation of the modified block copolymers. Formed aggregates in aqueous solutions of block copolymers with introduced carboxylic acid, amine and hydroxyl groups as well as fluorinated chains were characterised. Study of the aggregation behaviour allowed general conclusions to be drawn regarding the influence of the introduced groups on the self-organisation of the modified copolymers. Finally, possibilities for the formation of complexes, based on electrostatic or hydrogen-bonding interactions in mixtures of block copolymers bearing mutually interacting functional groups, were investigated. N2 - Um die Prinzipien der Selbstorganisation von Blockcopolymeren zu verstehen, ist es notwendig das Wissen auf den Gebieten der Synthese und der Physikochemie zu kombinieren. Die Fähigkeit, Blockcopolymere mit gewünschter Architektur zu synthetisieren, gibt einem auch die Möglichkeit das Aggregationsverhalten zu steuern, was wiederum der Schlüssel zur Nanotechnologie ist. Abgesehen von den relativen Blockvolumina, wird die Größe und Morphologie der gebildeten Nanostrukturen durch die effektive Inkompartibilität zwischen den unterschiedlichen Blöcken bestimmt. Da die Polymerisationstechniken, mit denen man gut definierte Blockcopolymere synthetisieren kann, auf bestimmte Monomere beschränkt sind, läßt sich diese Inkompatibilität nur eingeschränkt abstimmen. Polymeranaloge Reaktionen können dagegen eine Möglichkeit bieten, funktionale Blockcopolymere durch die chemische Modifizierung von gut definierten Copolymeren zu erhalten. Somit können, bei Verwendung von geeigneten Modifikationsmethoden, die Volumenanteile sowie die Inkompatibilität der Blöcke angepasst werden. Außerdem können Copolymere, die funktionelle Gruppe enthalten, es ermöglichen das Prinzip der molekularen Erkennung (Schloss-Schlüssel) auf dem Gebiet der synthetischen Polymere anzuwenden. Die vorleigende Arbeit beschreibt einen Ansatz zur modularen Synthese von funktionalen Blockcopolymeren. Durch radikalische Addition von funktionellen Mercaptanen wurden in Copolymere mit einem Polybutadien-Block verschiedenen funktionelle Gruppen eingebracht. Von 1,2-Polybutadien-Polyethylenoxid Blockcopolymeren werden dabei mehrere Modifikationen im Detail beschrieben. Zudem wird die Erweiterung des Konzepts auf 1,2-Polybutadien-Polystyrol Blockcopolymere gezeigt. Die weiteren Untersuchungen betrafen die Selbstorganisation der modifizierten Blockcopolymere in Lösung. Hierbei wurden die Aggregate, die in wässriger Lösung von Blockcopolymeren mit Carbonsäure-, Amin- und Hydroxylgruppen sowie fluorierte Ketten gebildet werden, charakterisiert. Die Untersuchung des Aggregationsverhaltens erlaubt es, generelle Aussagen über den Einfluss der eingebrachten Gruppen auf die Selbstorganisation der modifizierten Copolymere zu treffen. Abschließend wurde die Bildung von Komplexen auf der Basis von elektrostatischer Wechselwirkung oder Wasserstoffbrückenbindung in Mischungen aus Copolymeren, die untereinander Wechselwirkende funktionale Gruppe besitzen, untersucht. T2 - Towards a library of functional block copolymers : synthesis and colloidal properties KW - Blockcopolymere KW - Funktionalisierung KW - Selbstorganisation KW - Kolloid KW - Komplexe KW - Thiole KW - block copolymers KW - functionalization KW - self-organisation KW - colloids KW - complexes Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5907 ER - TY - THES A1 - Kubowicz, Stephan T1 - Design and characterization of multicompartment micelles in aqueous solution T1 - Design und Charakterisierung von Multikompartiment-Mizellen in wässriger Lösung N2 - Self-assembly of polymeric building blocks is a powerful tool for the design of novel materials and structures that combine different properties and may respond to external stimuli. In the past decades, most studies were focused on the self-assembly of amphiphilic diblock copolymers in solution. The dissolution of these block copolymers in a solvent selective for one block results mostly in the formation of micelles. The micellar structure of diblock copolymers is inherently limited to a homogeneous core surrounded by a corona, which keeps the micelle in solution. Thus, for drug-delivery applications, such structures only offer a single domain (the hydrophobic inner core) for drug entrapment. Whereas multicompartment micelles composed of a water-soluble shell and a segregated hydrophobic core are novel, interesting morphologies for applications in a variety of fields including medicine, pharmacy and biotechnology. The separated incompatible compartments of the hydrophobic core could enable the selective entrapment and release of various hydrophobic drugs while the hydrophilic shell would permit the stabilization of these nanostructures in physiological media. However, so far, the preparation and control of stable multicompartment micellar systems are in the first stages and the number of morphological studies concerning such micelles is rather low. Thus considerably little is known about their exact inner structures. In the present study, we concentrate on four different approaches for the preparation of multicompartment micelles by self-assembly in aqueous media. A similarity of all approaches was that hydrocarbon and fluorocarbon blocks were selected for all employed copolymers since such segments tend to be strongly incompatible, and thus favor the segregation into distinct domains. Our studies have shown that the self-assembly of the utilized copolymers in aqueous solution leads in three cases to the formation of multicompartment micelles. As expected the shape and size of the micelles depend on the molecular architecture and to some extent also on the way of preparation. These novel structured colloids may serve as models as well as mimics for biological structures such as globular proteins, and may open interesting opportunities for nanotechnology applications. N2 - Die Selbstorganisation von synthetischen amphiphilen Blockcopolymeren ist ein vielseitiger Prozeß, der die Entwicklung von neuartigen Materialien, die verschiedene Eigenschaften miteinander verbinden und auch auf äußere Reize reagieren können, ermöglicht. In den letzten Jahrzehnten haben sich viele Untersuchungen mit der Selbstorganisation von Diblockcopolymeren in Lösung beschäftigt. So bilden zum Beispiel amphiphile Diblock-Copolymere in Wasser meist Mizellen die einen hydrophoben Kern und eine hydrophile Hülle besitzen. Ihre potentielle Anwendung als Wirkstoffträger ist jedoch begrenzt, da für die Einlagerung nur ein hydrophober Bereich zur Verfügung steht. Multikompartment-Mizellen, bestehend aus einer wasserlöslichen Hülle und einem unterteilten hydrophoben Kern, sind dagegen neuartige und sehr interessante Strukturen für die Nanotechnologie und im speziellen für die Nanobiotechnologie, da sie sich zum Beispiel als Träger für Arznei- und Wirkstoffe eignen. So könnten in die separaten und untereinander nicht mischbaren Kompartimente im Kern der Mizelle verschiedene hydrophobe Wirkstoffe selektiv eingelagert und auch freigesetzt werden, wobei die hydrophile Hülle die Nanostrukturen im physiologischen Medium stabilisiert. Aus diesem Grund wurden in den letzten Jahren verschiedene Strategien für die Herstellung von Multikompartiment-Mizellen vorgeschlagen. Bis jetzt gibt es jedoch nur eine begrenzte Anzahl an Untersuchungen, die sich mit der Morphologie solcher Mizellen befassen und somit ist auch wenig über ihre innere Struktur bekannt. In der vorliegenden Arbeit konzentrieren wir uns auf vier verschiedene Ansätze zur Herstellung von Multikompartiment-Mizellen durch Selbstorganisation in wässriger Lösung. Eine Gemeinsamkeit bei allen Ansätzen ist, das die untersuchten Copolymere einen hydrophoben Kohlenwasserstoff-Block sowie einen Fluorkohlenstoff-Block besitzen. Die Kombination von Kohlenwasserstoff- und Fluorkohlenstoff-Blöcken wurden gewählt, weil solche Segmente in der Regel nicht miteinander kompatibel sind und somit die Aufteilung in separate Domänen begünstigen. Unsere Untersuchungen haben gezeigt, dass die Selbstorganisation der verwendeten Copolymere in wässriger Lösung in drei Fällen zu Multikompartiment-Mizellen führt. Die Form und Größe der Mizellen ist erwartungsgemäß von der Molekülarchitektur und zum Teil auch vom Präparationsweg abhängig. Diese neuartigen, nanostrukturierten Kolloide könnten als Modell und Mimetika für biologische Strukturen wie die von globulären Proteinen fungieren. Sie eröffnen weiterhin interessante Möglichkeiten für Anwendungen in der Nanotechnologie. T2 - Design and characterization of multicompartment micelles in aqueous solution KW - Amphiphile Verbindungen KW - Blockcopolymere KW - Micelle KW - Selbstorganisation KW - Kolloides System KW - Kolloid / Lösung KW - amphiphiles KW - block copolymers KW - colloids KW - micelles KW - self-assembly Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5752 ER -