TY - THES A1 - Olszewska, Agata T1 - Forming magnetic chain with the help of biological organisms T1 - Die Bildung magnetischer Kettenstrukturen mit Hilfe biologischer Organismen N2 - Magnetite nanoparticles and their assembly comprise a new area of development for new technologies. The magnetic particles can interact and assemble in chains or networks. Magnetotactic bacteria are one of the most interesting microorganisms, in which the assembly of nanoparticles occurs. These microorganisms are a heterogeneous group of gram negative prokaryotes, which all show the production of special magnetic organelles called magnetosomes, consisting of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane. The chain is assembled along an actin-like scaffold made of MamK protein, which makes the magnetosomes to arrange in mechanically stable chains. The chains work as a compass needle in order to allow cells to orient and swim along the magnetic field of the Earth. The formation of magnetosomes is known to be controlled at the molecular level. The physico–chemical conditions of the surrounding environment also influence biomineralization. The work presented in this manuscript aims to understand how such external conditions, in particular the extracellular oxidation reduction potential (ORP) influence magnetite formation in the strain Magnetospirillum magneticum AMB-1. A controlled cultivation of the microorganism was developed in a bioreactor and the formation of magnetosomes was characterized. Different techniques have been applied in order to characterize the amount of iron taken up by the bacteria and in consequence the size of magnetosomes produced at different ORP conditions. By comparison of iron uptake, morphology of bacteria, size and amount of magnetosomes per cell at different ORP, the formation of magnetosomes was inhibited at ORP 0 mV, whereas reduced conditions, ORP – 500 mV facilitate biomineralization process. Self-assembly of magnetosomes occurring in magnetotactic bacteria became an inspiration to learn from nature and to construct nanoparticles assemblies by using the bacteriophage M13 as a template. The M13 bacteriophage is an 800 nm long filament with encapsulated single-stranded DNA that has been recently used as a scaffold for nanoparticle assembly. I constructed two types of assemblies based on bacteriophages and magnetic nanoparticles. A chain – like assembly was first formed where magnetite nanoparticles are attached along the phage filament. A sperm – like construct was also built with a magnetic head and a tail formed by phage filament. The controlled assembly of magnetite nanoparticles on the phage template was possible due to two different mechanism of nanoparticle assembly. The first one was based on the electrostatic interactions between positively charged polyethylenimine coated magnetite nanoparticles and negatively charged phages. The second phage –nanoparticle assembly was achieved by bioengineered recognition sites. A mCherry protein is displayed on the phage and is was used as a linker to a red binding nanobody (RBP) that is fused to the one of the proteins surrounding the magnetite crystal of a magnetosome. Both assemblies were actuated in water by an external magnetic field showing their swimming behavior and potentially enabling further usage of such structures for medical applications. The speed of the phage - nanoparticles assemblies are relatively slow when compared to those of microswimmers previously published. However, only the largest phage-magnetite assemblies could be imaged and it is therefore still unclear how fast these structures can be in their smaller version. N2 - Magnetit-Nanopartikel (Fe3O4) und deren Anordnungen umfassen einen neuen Bereich in der Entwicklung neuer Technologien. Diese magnetischen Teilcheninteragieren miteinander und unter bestimmten Umständen lassen sie sich in Ketten anordnen. Magnetotaktische Bakterien stellen eine Gruppeinteressanter Mikroorganismen dar, in welchen ebendiese kettenförmige Anordnung von Nanopartikeln vorkommt. Diese Mikroorgansimen gehören zu einer heterogenen Gruppe an Gram negativen Prokaryoten, welche die Produktion von speziellen magnetischen Organellen, den sogenannten Magnetosomen, aufweist. Die Magnetosomen bestehen entweder aus Magnetit- oder Greigit (Fe3S4)- Nanopartikeln, welche in einer Membran eingebettet sind. Die Kette ist entlang eines Aktin ähnlichen Gerüstes angeordnet, welches aus dem Protein MamK besteht und dafür verantwortlich ist, dass sich die Magnetosomen in mechanisch stabilen Ketten arrangieren können. Diese Ketten fungieren als Kompass Nadeln und ermöglichen es den Zellen sich entlang des Magnetfeldes der Erde zuorientieren. Es ist bekannt, dass die Bildung der Magnetosomen auf molekularer Ebene kontrolliert wird. Die physiko-chemischen Bedingungen der direkten Umgebung beeinflussen die Biomineralisierung. Die in diesem Manuskript vorgestellte Arbeit setzt sich zum Ziel, die äußeren Bedingungen, im Speziellen der Einfluss des extrazellulären Oxidations- und Reduktions-Potentials (ORP) auf die Magnetit Bildung im Bakterienstamm Magnetospirillum magneticum AMB-1 besser zu verstehen. Eine kontrollierte Anzucht des Mikroorganismus wurde im Bioreaktor entwickelt und die Magnetosomenbildung wurden charakterisiert. Unter verschiedenen ORP-Bedingungen wurde untersucht, wieviel Eisen von den Bakterien aufgenommen wird und welche Auswirkungen das auf die Zahl und Größe der Magnetosomen hat. Untersucht man die Parameter Eisenaufnahme, Morphologie der Bakterien, Größe und Menge der Magnetosomen pro Zelle kommt man zu dem Schluss, dass die Magnetosomenbildung bei einem ORP von 0 mV inhibiert wird, wobei reduzierende Bedingungen bei einem ORP von -500 mV den Biomineralisationsprozess fördern. Inspiriert von der Fähigkeit der Selbstorganisation von Magnetosomen in MTB wurde versucht Nanopartikel-Anordnungen mit Hilfe des Bakteriophagen M13 als Vorlage zu konstruieren. Der Bakteriophage M13 ist ein 800 nm langes Filament mit eingekapselter einzelsträngiger DNA und wurde schon zuvor als Gerüst für Nanopartikel-Konstrukte verwendet. Ich habe zwei Typen von Anordnungen basierend auf Bakteriophagen und magnetischen Nanopartikeln konstruiert. Es wurde eine kettenartige Struktur, an der magnetische Nanopartikel entlang eines Phagenfilamentes angebracht sind und ein spermienähnliches Konstrukt mit einem magnetischen Kopf und einem Phagenfilament als Schwanz, entwickelt. Um eine kontrollierte Anordnung von Magnetit-Nanopartikeln an den Phagen zu ermöglichen, wurden zwei verschiedene Ansätze verfolgt. Der erste basierte auf elektrostatischen Wechselwirkungen zwischen den mit positiv geladenem Polyethylenimin dekorierten Magnetit-Nanopartikeln und den negativ geladenen Phagen. Das zweite Phagen-Nanopartikel-Konstrukt wurde mit Hilfe von biologisch veränderten Erkennungsseiten hergestellt. Die Phagen weisen ein mCherry Protein auf, welches als Verbindungsstück für den red binding nanobody (RBP) verwendet wurde. Dieser wurde mit einem der Proteine fusioniert, welches die Magnetit Kristalle der Magnetosomen umhüllt. Beide Konstrukte wurden mit Hilfe eines externen Magnetfeldes im Wasser angeregt, wobei sich ihr Schwimmverhalten und das Potential für medizinische Anwendungen dieser Strukturen zeigten. Die Geschwindigkeit der Phagen-Nanopartikel-Konstrukte war im Vergleich zu den bisher veröffentlichten Mikroschwimmern relativ langsam. Es konnten jedoch nur die größten Phagen-Magnetit-Konstrukte visualisiert werden, wodurch die Geschwindigkeit der kleineren Versionen dieser Strukturen noch unklar bleibt. KW - nanoparticles KW - phages KW - nanoparticles assembly KW - magnetotactic bacteria KW - Nanopartikel KW - magnetotaktische Bakterien KW - magnetite Ketter KW - Bakteriophagen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89767 ER - TY - THES A1 - Mitzscherling, Steffen T1 - Polyelectrolyte multilayers for plasmonics and picosecond ultrasonics T1 - Multischichten aus Polyelektrolyten in der Pikosekundenakustik und Plasmonik N2 - This thesis investigates the application of polyelectrolyte multilayers in plasmonics and picosecond acoustics. The observed samples were fabricated by the spin-assisted layer-by-layer deposition technique that allowed a precise tuning of layer thickness in the range of few nanometers. The first field of interest deals with the interaction of light-induced localized surface plasmons (LSP) of rod-shaped gold nanoparticles with the particles' environment. The environment consists of an air phase and a phase of polyelectrolytes, whose ratio affects the spectral position of the LSP resonance. Measured UV-VIS spectra showed the shift of the LSP absorption peak as a function of the cover layer thickness of the particles. The data are modeled using an average dielectric function instead of the dielectric functions of air and polyelectrolytes. In addition using a measured dielectric function of the gold nanoparticles, the position of the LSP absorption peak could be simulated with good agreement to the data. The analytic model helps to understand the optical properties of metal nanoparticles in an inhomogeneous environment. The second part of this work discusses the applicability of PAzo/PAH and dye-doped PSS/PAH polyelectrolyte multilayers as transducers to generate hypersound pulses. The generated strain pulses were detected by time-domain Brillouin scattering (TDBS) using a pump-probe laser setup. Transducer layers made of polyelectrolytes were compared qualitatively to common aluminum transducers in terms of measured TDBS signal amplitude, degradation due to laser excitation, and sample preparation. The measurements proved that fast and easy prepared polyelectrolyte transducers provided stronger TDBS signals than the aluminum transducer. AFM topography measurements showed a degradation of the polyelectrolyte structures, especially for the PAzo/PAH sample. To quantify the induced strain, optical barriers were introduced to separate the transducer material from the medium of the hypersound propagation. Difficulties in the sample preparation prohibited a reliable quantification. But the experiments showed that a coating with transparent polyelectrolytes increases the efficiency of aluminum transducers and modifies the excited phonon distribution. The adoption of polyelectrolytes to the scientific field of picosecond acoustics enables a cheap and fast fabrication of transducer layers on most surfaces. In contrast to aluminum layers the polyelectrolytes are transparent over a wide spectral range. Thus, the strain modulation can be probed from surface and back. N2 - Diese Doktorarbeit behandelt die Verwendung von Multischichtsystemen aus Polyelektrolyten in den Fachgebieten der Plasmonik und der Pikosekunden-Akustik. Die verwendeten Proben wurden mit dem Spincoater-gestützten Layer-by-Layer-Verfahren hergestellt. Diese Methode ermöglichte die Einstellung Schichtdicke mit einer Präzision von wenigen Nanometern. Im Bereich der Plasmonik wurde die Wechselwirkung von Oberflächenplasmonen stabförmiger Gold-Nanopartikel mit deren Umgebung untersucht. Diese Umgebung bestand aus zwei Phasen: Polyelektrolyte und Luft. Das Volumenverhältnis der Materialien bestimmte die spektrale Position des Oberflächenplasmons. Bei zunehmender Einbettung der Goldpartikel zeigten die gemessenen UV-VIS Spektren eine Rotverschiebung der Plasmonenabsorption. Es wurde ein Modell entwickelt, das die inhomogene Umgebung der Partikel durch eine mittlere dieelekrische Funktion beschreibt. Nachdem die dielektrische Funktion der Goldpartikel in separaten Messungen bestimmt waren, konnte die Lage der Plasmonenabsorption berechnet werden. Die Berechnungen stimmten dabei mit den Messwerten überein. Mit diesem analytischen Modell ist es möglich, die optischen Eigenschaften von metallischen Nanopartikeln in einer inhomogenene Umgebung zu verstehen. Der zweite Teil dieser Arbeit diskutiert die Anwendbarkeit von polyelektrolytischen Multischichten aus PAzo/PAH bzw. Porphyrin-dotiertem PSS/PAH für die Erzeugung von Hyperschallpulsen. Die erzeugten Schallpulse wurden durch zeitaufgelöste Brillouin-Streuung in einem sogenannten pump-probe Aufbau detektiert. Schallerzeugende Schichten aus Polyelektrolyten wurden mit Wandlern aus Aluminium verglichen. Die Messungen zeigten, dass die Polyelektrolyte sehr gut für die Erzeugung von Schallpulsen geeignet sind. Der einfachen Probenpräparation und der guten Effizienz steht jedoch eine geringe Zerstörschwelle gegenüber. AFM-Messungen zeigten besonders bei den PAzo/PAH Multischichten sehr starke Veränderungen in der Struktur. Eine Quantisierung der induzierten Schallamplitude sollte durch eine optische Trennung von Wandler und Propagationmedium erreicht werden. Da die Trennschichten auch eine akustische Abkopplung bewirkten, ließen sich die Schallamplituden nicht bestimmen. Es wurde jedoch festgestellt, dass sich die Effizienz eines Aluminium-Wandlers durch das Aufbringen transparenter Polyelektrolytschichten deutlich steigern lässt. Die Herstellung von Ultraschall-Wandlern aus Polyelektrolyten erweitert die Möglichkeiten der Pikosekunden-Akustik. Zum einen können diese Wandler schnell und kostengünstig direkt auf fast jeder Oberfläche aufgebracht werden. Zum anderen sind Polyelektrolyte in einem breiten Spektralbereich transparent. Das ermöglicht Messungen von der Vorderseite, die bei herkömmlichen Aluminium-Wandlern nicht oder nur schwer realisierbar sind. KW - polyelectrolyte KW - plasmonics KW - picosecond acoustics KW - hypersound KW - nanoparticle KW - Polyelektrolyte KW - Pikosekundenakustik KW - Hyperschall KW - Plasmonik KW - Nanopartikel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-80833 ER -