TY - JOUR A1 - Timme, Sinika A1 - Brand, Ralf T1 - Affect and exertion during incremental physical exercise: Examining changes using automated facial action analysis and experiential self-report JF - PLoS ONE N2 - Recent research indicates that affective responses during exercise are an important determinant of future exercise and physical activity. Thus far these responses have been measured with standardized self-report scales, but this study used biometric software for automated facial action analysis to analyze the changes that occur during physical exercise. A sample of 132 young, healthy individuals performed an incremental test on a cycle ergometer. During that test the participants’ faces were video-recorded and the changes were algorithmically analyzed at frame rate (30 fps). Perceived exertion and affective valence were measured every two minutes with established psychometric scales. Taking into account anticipated inter-individual variability, multilevel regression analysis was used to model how affective valence and ratings of perceived exertion (RPE) covaried with movement in 20 facial action areas. We found the expected quadratic decline in self-reported affective valence (more negative) as exercise intensity increased. Repeated measures correlation showed that the facial action mouth open was linked to changes in (highly intercorrelated) affective valence and RPE. Multilevel trend analyses were calculated to investigate whether facial actions were typically linked to either affective valence or RPE. These analyses showed that mouth open and jaw drop predicted RPE, whereas (additional) nose wrinkle was indicative for the decline in affective valence. Our results contribute to the view that negative affect, escalating with increasing exercise intensity, may be the body’s essential warning signal that physiological overload is imminent. We conclude that automated facial action analysis provides new options for researchers investigating feelings during exercise. In addition, our findings offer physical educators and coaches a new way of monitoring the affective state of exercisers, without interrupting and asking them. Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0228739 SN - 1932-6203 VL - 15 IS - 2 SP - 1 EP - 17 PB - PLOS ONE / Public Library of Science CY - San Francisco ER - TY - JOUR A1 - Omidbakhshfard, Mohammad Amin A1 - Neerakkal, Sujeeth A1 - Gupta, Saurabh A1 - Omranian, Nooshin A1 - Guinan, Kieran J. A1 - Brotman, Yariv A1 - Nikoloski, Zoran A1 - Fernie, Alisdair R. A1 - Mueller-Roeber, Bernd A1 - Gechev, Tsanko S. T1 - A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress JF - International Journal of Molecular Sciences N2 - Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels. KW - Ascophyllum nodosum KW - Arabidopsis thaliana KW - biostimulant KW - paraquat KW - priming KW - oxidative stress tolerance KW - reactive oxygen species Y1 - 2019 U6 - https://doi.org/10.3390/ijms21020474 SN - 1422-0067 VL - 21 IS - 2 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Bosch, Jannis A1 - Wilbert, Jürgen T1 - Contrast and Assimilation Effects on Self-Evaluation of Performance and Task Interest in a Sample of Elementary School Children JF - Frontiers in Education N2 - Social comparison processes and the social position within a school class already play a major role in performance evaluation as early as in elementary school. The influence of contrast and assimilation effects on self-evaluation of performance as well as task interest has been widely researched in observational studies under the labels big-fish-little-pond and basking-in-reflected-glory effect. This study examined the influence of similar contrast and assimilation effects in an experimental paradigm. Fifth and sixth grade students (n = 230) completed a computer-based learning task during which they received social comparative feedback based on 2 × 2 experimentally manipulated feedback conditions: social position (high vs. low) and peer performance (high vs. low). Results show a more positive development of task interest and self-evaluation of performance in both the high social position and the high peer performance condition. When applied to the school setting, results of this study suggest that students who already perform well in comparison to their peer group are also the ones who profit most from social comparative feedback, given that they are the ones who usually receive the corresponding positive performance feedback. KW - social comparison KW - feedback KW - self-evaluation KW - interest KW - contrast effect Y1 - 2019 U6 - https://doi.org/10.3389/feduc.2019.00165 SN - 2504-284X VL - 4 IS - 165 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Wendt, Julia A1 - Hufenbach, Miriam Catrin A1 - König, Jörg A1 - Hamm, Alfons O. T1 - Effects of verbal instructions and physical threat removal prior to extinction training on the return of conditioned fear JF - Scientific Reports N2 - Instructions given prior to extinction training facilitate the extinction of conditioned skin conductance (SCRs) and fear-potentiated startle responses (FPSs) and serve as laboratory models for cognitive interventions implemented in exposure-based treatments of pathological anxiety. Here, we investigated how instructions given prior to extinction training, with or without the additional removal of the electrode used to deliver the unconditioned stimulus (US), affect the return of fear assessed 24 hours later. We replicated previous instruction effects on extinction and added that the additional removal of the US electrode slightly enhanced facilitating effects on the extinction of conditioned FPSs. In contrast, extinction instructions hardly affected the return of conditioned fear responses. These findings suggest that instruction effects observed during extinction training do not extent to tests of return of fear 24 hours later which serve as laboratory models of relapse and improvement stability of exposure-based treatments. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-020-57934-7 SN - 2045-2322 VL - 10 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Erler, Alexander A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Gebbers, Robin T1 - Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR) JF - Sensors N2 - Precision agriculture (PA) strongly relies on spatially differentiated sensor information. Handheld instruments based on laser-induced breakdown spectroscopy (LIBS) are a promising sensor technique for the in-field determination of various soil parameters. In this work, the potential of handheld LIBS for the determination of the total mass fractions of the major nutrients Ca, K, Mg, N, P and the trace nutrients Mn, Fe was evaluated. Additionally, other soil parameters, such as humus content, soil pH value and plant available P content, were determined. Since the quantification of nutrients by LIBS depends strongly on the soil matrix, various multivariate regression methods were used for calibration and prediction. These include partial least squares regression (PLSR), least absolute shrinkage and selection operator regression (Lasso), and Gaussian process regression (GPR). The best prediction results were obtained for Ca, K, Mg and Fe. The coefficients of determination obtained for other nutrients were smaller. This is due to much lower concentrations in the case of Mn, while the low number of lines and very weak intensities are the reason for the deviation of N and P. Soil parameters that are not directly related to one element, such as pH, could also be predicted. Lasso and GPR yielded slightly better results than PLSR. Additionally, several methods of data pretreatment were investigated. KW - LIBS KW - lasso KW - PLS regression KW - gaussian processes KW - soil KW - precision agriculture KW - nutrients Y1 - 2020 U6 - https://doi.org/10.3390/s20020418 SN - 1424-8220 VL - 20 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ebel, Kenny A1 - Bald, Ilko T1 - Length and Energy Dependence of Low-Energy Electron-Induced Strand Breaks in Poly(A) DNA JF - International Journal of Molecular Sciences N2 - The DNA in living cells can be effectively damaged by high-energy radiation, which can lead to cell death. Through the ionization of water molecules, highly reactive secondary species such as low-energy electrons (LEEs) with the most probable energy around 10 eV are generated, which are able to induce DNA strand breaks via dissociative electron attachment. Absolute DNA strand break cross sections of specific DNA sequences can be efficiently determined using DNA origami nanostructures as platforms exposing the target sequences towards LEEs. In this paper, we systematically study the effect of the oligonucleotide length on the strand break cross section at various irradiation energies. The present work focuses on poly-adenine sequences (d(A₄), d(A₈), d(A₁₂), d(A₁₆), and d(A₂₀)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. When going from d(A₄) to d(A₁₆), the strand break cross section increases with oligonucleotide length, but only at 7.0 and 8.4 eV, i.e., close to the maximum of the negative ion resonance, the increase in the strand break cross section with the length is similar to the increase of an estimated geometrical cross section. For d(A₂₀), a markedly lower DNA strand break cross section is observed for all electron energies, which is tentatively ascribed to a conformational change of the dA₂₀ sequence. The results indicate that, although there is a general length dependence of strand break cross sections, individual nucleotides do not contribute independently of the absolute strand break cross section of the whole DNA strand. The absolute quantification of sequence specific strand breaks will help develop a more accurate molecular level understanding of radiation induced DNA damage, which can then be used for optimized risk estimates in cancer radiation therapy. KW - DNA origami KW - DNA radiation damage KW - DNA strand breaks KW - low-energy electrons KW - sequence dependence Y1 - 2019 U6 - https://doi.org/10.3390/ijms21010111 SN - 1422-0067 VL - 21 IS - 1 PB - Molecular Diversity Preservation International CY - Basel ER -