TY - JOUR A1 - Sperling, Marcel A1 - Reifarth, Martin A1 - Grobe, Richard A1 - Böker, Alexander T1 - Tailoring patches on particles: a modified microcontact printing routine using polymer-functionalised stamps JF - Chemical communications N2 - Herein, we report a modified microcontact printing (mu CP) routine suitable to introduce particle patches of a low molecular weight ink (LMWI) on porous SiO2 microparticles. Thereby, patch precision could be significantly improved by utilising stamps which have been surface-functionalised with grafted polymers. This improvement was evaluated by a profound software-assisted statistical analysis. Y1 - 2019 U6 - https://doi.org/10.1039/c9cc03903a SN - 1359-7345 SN - 1364-548X VL - 55 IS - 68 SP - 10104 EP - 10107 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Schürmann, Robin Mathis A1 - Pacholski, Claudia T1 - One Spot-Two Sensors: Porous Silicon Interferometers in Combination With Gold Nanostructures Showing Localized Surface Plasmon Resonance JF - Frontiers in chemistry N2 - Sensors composed of a porous silicon monolayer covered with a film of nanostructured gold layer, which provide two optical signal transduction methods, are fabricated and thoroughly characterized concerning their sensing performance. For this purpose, silicon substrates were electrochemically etched in order to obtain porous silicon monolayers, which were subsequently immersed in gold salt solution facilitating the formation of a porous gold nanoparticle layer on top of the porous silicon. The deposition process was monitored by reflectance spectroscopy, and the appearance of a dip in the interference pattern of the porous silicon layer was observed. This dip can be assigned to the absorption of light by the deposited gold nanostructures leading to localized surface plasmon resonance. The bulk sensitivity of these sensors was determined by recording reflectance spectra in media having different refractive indices and compared to sensors exclusively based on porous silicon or gold nanostructures. A thorough analysis of resulting shifts of the different optical signals in the reflectance spectra on the wavelength scale indicated that the optical response of the porous silicon sensor is not influenced by the presence of a gold nanostructure on top. Moreover, the adsorption of thiol-terminated polystyrene to the sensor surface was solely detected by changes in the position of the dip in the reflectance spectrum, which is assigned to localized surface plasmon resonance in the gold nanostructures. The interference pattern resulting from the porous silicon layer is not shifted to longer wavelengths by the adsorption indicating the independence of the optical response of the two nanostructures, namely porous silicon and nanostructured gold layer, to refractive index changes and pointing to the successful realization of two sensors in one spot. KW - porous silicon KW - interferometry KW - gold nanostructures KW - surface plasmon resonance KW - optical sensor Y1 - 2019 U6 - https://doi.org/10.3389/fchem.2019.00593 SN - 2296-2646 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Lai, Feili A1 - Feng, Jianrui A1 - Heil, Tobias A1 - Tian, Zhihong A1 - Schmidt, Johannes A1 - Wang, Gui-Chang A1 - Oschatz, Martin T1 - Partially delocalized charge in Fe-doped NiCo2S4 nanosheet-mesoporous carbon-composites for high-voltage supercapacitors JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Unraveling the effect of transition-metal doping on the energy storage properties of bimetallic sulfides remains a grand challenge. Herein, we construct bimetallic sulfide nanosheets and hence deliberately introduce transition-metal doping domains on their surface. The resulting materials show not only an enhanced density of states near the Fermi level but also partially delocalized charge as shown by density functional theory (DFT) calculations. Fe-doped NiCo2S4 nanosheets wrapped on N,S-doped ordered mesoporous carbon (Fe-NiCo2S4@N,S-CMK-3) are prepared, which show an enhanced specific capacitance of 197.8 F g(-1) in ionic liquid-based supercapacitors at a scan rate of 2 mV s(-1). This is significantly higher as compared to the capacitance of 155.2 and 135.9 F g(-1) of non-iron-doped NiCo2S4@N,S-CMK and Fe-NiCo2S4@CMK-3 electrodes, respectively. This result arises from the enhanced ionic liquid polarization effect and transportation ability from the Fe-NiCo2S4 surface and N,S-CMK-3 structure. Furthermore, the importance of matching multi-dimensional structures and ionic liquid ion sizes in the fabrication of asymmetric supercapacitors (ASCs) is demonstrated. As a result, the ASC device exhibits a high energy density of 107.5 W h kg(-1) at a power density of 100 W kg(-1) in a working-voltage window of 4 V when using Fe-NiCo2S4@N,S-CMK-3 and N,S-CMK-3 as positive and negative electrodes, respectively. This work puts forward a new direction to design supercapacitor composite electrodes for efficient ionic liquid coupling. Y1 - 2019 U6 - https://doi.org/10.1039/c9ta06250e SN - 2050-7488 SN - 2050-7496 VL - 7 IS - 33 SP - 19342 EP - 19347 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Reinicke, Stefan A1 - Fischer, Thilo A1 - Bramski, Julia A1 - Pietruszka, Jörg A1 - Böker, Alexander T1 - Biocatalytically active microgels by precipitation polymerization of N-isopropyl acrylamide in the presence of an enzyme JF - RSC Advances N2 - We present a novel protocol for the synthesis of enzymatically active microgels. The protocol is based on the precipitation polymerization of N-isopropylacrylamide (NIPAm) in the presence of an enzyme and a protein binding comonomer. A basic investigation on the influence of different reaction parameters such as monomer concentration and reaction temperature on the microgel size and size distribution is performed and immobilization yields are determined. Microgels exhibiting hydrodynamic diameters between 100 nm and 1 mu m and narrow size distribution could be synthesized while about 31-44% of the enzyme present in the initial reaction mixture can be immobilized. Successful immobilization including a verification of enzymatic activity of the microgels is achieved for glucose oxidase (GOx) and 2-deoxy-d-ribose-5-phosphate aldolase (DERA). The thermoresponsive properties of the microgels are assessed and discussed in the light of activity evolution with temperature. The positive correlation of enzymatic activity with temperature for the GOx containing microgel originates from a direct interaction of the enzyme with the PNIPAm based polymer matrix whose magnitude is highly influenced by temperature. Y1 - 2019 U6 - https://doi.org/10.1039/c9ra04000e SN - 2046-2069 VL - 9 IS - 49 SP - 28377 EP - 28386 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Shou, Keyun A1 - Bremer, Anne A1 - Rindfleisch, Tobias A1 - Knox-Brown, Patrick A1 - Hirai, Mitsuhiro A1 - Rekas, Agata A1 - Garvey, Christopher J. A1 - Hincha, Dirk K. A1 - Stadler, Andreas M. A1 - Thalhammer, Anja T1 - Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity - an X-ray and light scattering study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an alpha-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function. Y1 - 2019 U6 - https://doi.org/10.1039/c9cp01768b SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 34 SP - 18727 EP - 18740 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kuroki, Agnes A1 - Tchoupa, Arnaud Kengmo A1 - Hartlieb, Matthias A1 - Peltier, Raoul A1 - Locock, Katherine E. S. A1 - Unnikrishnan, Meera A1 - Perrier, Sebastien T1 - Targeting intracellular, multi-drug resistant Staphylococcus aureus with guanidinium polymers by elucidating the structure-activity relationship JF - Biomaterials : biomaterials reviews online N2 - Intracellular persistence of bacteria represents a clinical challenge as bacteria can thrive in an environment protected from antibiotics and immune responses. Novel targeting strategies are critical in tackling antibiotic resistant infections. Synthetic antimicrobial peptides (SAMPs) are interesting candidates as they exhibit a very high antimicrobial activity. We first compared the activity of a library of ammonium and guanidinium polymers with different sequences (statistical, tetrablock and diblock) synthesized by RAFT polymerization against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive strains (MSSA). As the guanidinium SAMPs were the most potent, they were used to treat intracellular S. aureus in keratinocytes. The diblock structure was the most active, reducing the amount of intracellular MSSA and MRSA by two-fold. We present here a potential treatment for intracellular, multi-drug resistant bacteria, using a simple and scalable strategy. KW - Antimicrobial KW - Intracellular bacteria KW - Block copolymers KW - RAFT polymerization Y1 - 2019 U6 - https://doi.org/10.1016/j.biomaterials.2019.119249 SN - 0142-9612 SN - 1878-5905 VL - 217 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Walczak, Ralf A1 - Savateev, Aleksandr A1 - Heske, Julian A1 - Tarakina, Nadezda V. A1 - Sahoo, Sudhir A1 - Epping, Jan D. A1 - Kuehne, Thomas D. A1 - Kurpil, Bogdan A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Controlling the strength of interaction between carbon dioxide and nitrogen-rich carbon materials by molecular design JF - Sustainable energy & fuels N2 - Thermal treatment of hexaazatriphenylene-hexacarbonitrile (HAT-CN) in the temperature range from 500 degrees C to 700 degrees C leads to precise control over the degree of condensation, and thus atomic construction and porosity of the resulting C2N-type materials. Depending on the condensation temperature of HAT-CN, nitrogen contents of more than 30 at% can be reached. In general, these carbons show adsorption properties which are comparable to those known for zeolites but their pore size can be adjusted over a wider range. At condensation temperatures of 525 degrees C and below, the uptake of nitrogen gas remains negligible due to size exclusion, but the internal pores are large and polarizing enough that CO2 can still adsorb on part of the internal surface. This leads to surprisingly high CO2 adsorption capacities and isosteric heat of adsorption of up to 52 kJ mol(-1). Theoretical calculations show that this high binding enthalpy arises from collective stabilization effects from the nitrogen atoms in the C2N layers surrounding the carbon atom in the CO2 molecule and from the electron acceptor properties of the carbon atoms from C2N which are in close proximity to the oxygen atoms in CO2. A true CO2 molecular sieving effect is achieved for the first time in such a metal-free organic material with zeolite-like properties, showing an IAST CO2/N-2 selectivity of up to 121 at 298 K and a N-2/CO2 ratio of 90/10 without notable changes in the CO2 adsorption properities over 80 cycles. Y1 - 2019 U6 - https://doi.org/10.1039/c9se00486f SN - 2398-4902 VL - 3 IS - 10 SP - 2819 EP - 2827 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Jia, He A1 - Quan, Ting A1 - Liu, Xuelian A1 - Bai, Lu A1 - Wang, Jiande A1 - Boujioui, Fadoi A1 - Ye, Ran A1 - Vald, Alexandru A1 - Lu, Yan A1 - Gohy, Jean-Francois T1 - Core-shell nanostructured organic redox polymer cathodes with superior performance JF - Nano Energy N2 - Core-shell nanoparticles stabilized by a cationic surfactant are prepared from the poly(2,2,6,6-tetra-methylpiperidinyloxy-4-yl methacrylate) redox polymer. The nanoparticles are further self-assembled with negatively charged reduced graphene oxide nanosheets and negatively charged mull-walled carbon nanotubes. This results in the formation of a free-standing cathode with a layered nanostructure and a high content of redox polymer that exhibits 100% utilization of the active substance with a measured capacity as high as 105 mAh/g based on the whole weight of the electrode. KW - Nanostructured KW - Redox polymer KW - Organic electrode KW - Lithium ion battery KW - Energy storage Y1 - 2019 U6 - https://doi.org/10.1016/j.nanoen.2019.103949 SN - 2211-2855 SN - 2211-3282 VL - 64 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lendlein, Andreas A1 - Balk, Maria A1 - Tarazona, Natalia A. A1 - Gould, Oliver E. C. T1 - Bioperspectives for Shape-Memory Polymers as Shape Programmable, Active Materials JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Within the natural world, organisms use information stored in their material structure to generate a physical response to a wide variety of environmental changes. The ability to program synthetic materials to intrinsically respond to environmental changes in a similar manner has the potential to revolutionize material science. By designing polymeric devices capable of responsively changing shape or behavior based on information encoded into their structure, we can create functional physical behavior, including a shape memory and an actuation capability. Here we highlight the stimuli-responsiveness and shape-changing ability of biological materials and biopolymer-based materials, plus their potential biomedical application, providing a bioperspective on shape-memory materials. We address strategies to incorporate a shape memory (actuation) function in polymeric materials, conceptualized in terms of its relationship with inputs (environmental stimuli) and outputs (shape change). Challenges and opportunities associated with the integration of several functions in a single material body to achieve multifunctionality are discussed. Finally, we describe how elements that sense, convert, and transmit stimuli have been used to create multisensitive materials. Y1 - 2019 U6 - https://doi.org/10.1021/acs.biomac.9b01074 SN - 1525-7797 SN - 1526-4602 VL - 20 IS - 10 SP - 3627 EP - 3640 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Miedema, Piter S. A1 - Thielemann-Kühn, Nele A1 - Calafell, Irati Alonso A1 - Schüßler-Langeheine, Christian A1 - Beye, Martin T1 - Strain analysis from M-edge resonant inelastic X-ray scattering of nickel oxide films JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Electronic structure modifications due to strain are an effective method for tailoring nano-scale functional materials. Demonstrated on nickel oxide (NiO) thin films, Resonant Inelastic X-ray Scattering (RIXS) at the transition-metal M-2,M-3-edge is shown to be a powerful tool for measuring the electronic structure modification due to strain in the near-surface region. Analyses from the M-2,M-3-edge RIXS in comparison with dedicated crystal field multiplet calculations show distortions in 40 nm NiO grown on a magnesium oxide (MgO) substrate (NiO/MgO) similar to those caused by surface relaxation of bulk NiO. The films of 20 and 10 nm NiO/MgO show slightly larger differences from bulk NiO. Quantitatively, the NiO/MgO samples all are distorted from perfect octahedral (O-h) symmetry with a tetragonal parameter Ds of about -0.1 eV, very close to the Ds distortion from octahedral (O-h) symmetry parameter of -0.11 eV obtained for the surface-near region from a bulk NiO crystal. Comparing the spectra of a 20 nm film of NiO grown on a 20 nm magnetite (Fe3O4) film on a MgO substrate (NiO/Fe3O4/MgO) with the calculated multiplet analyses, the distortion parameter Ds appears to be closer to zero, showing that the surface-near region of this templated film is less distorted from O-h symmetry than the surface-near region in bulk NiO. Finally, the potential of M-2,M-3-edge RIXS for other investigations of strain on electronic structure is discussed. Y1 - 2019 U6 - https://doi.org/10.1039/c9cp03593a SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 38 SP - 21596 EP - 21602 PB - Royal Society of Chemistry CY - Cambridge ER -