TY - JOUR A1 - Miller, Amy E. A1 - Cioni, Maria-Rosa L. A1 - de Grijs, Richard A1 - Sun, Ning-Chen A1 - Bell, Cameron P. M. A1 - Choudhury, Samyaday A1 - Ivanov, Valentin D. A1 - Marconi, Marcella A1 - Oliveira, Joana M. A1 - Petr-Gotzens, Monika A1 - Ripepi, Vincenzo A1 - van Loon, Jacco Th. T1 - The VMC survey - XLVII. Turbulence-controlled hierarchical star formation in the large magellanic cloud JF - Monthly notices of the Royal Astronomical Society N2 - We perform a statistical clustering analysis of upper main-sequence stars in the Large Magellanic Cloud (LMC) using data from the Visible and Infrared Survey Telescope for Astronomy survey of the Magellanic Clouds. We map over 2500 young stellar structures at 15 significance levels across similar to 120 square degrees centred on the LMC. The structures have sizes ranging from a few parsecs to over 1 kpc. We find that the young structures follow power-law size and mass distributions. From the perimeter-area relation, we derive a perimeter-area dimension of 1.44 +/- 0.20. From the mass-size relation and the size distribution, we derive two-dimensional fractal dimensions of 1.50 +/- 0.10 and 1.61 +/- 0.20, respectively. We find that the surface density distribution is well represented by a lognormal distribution. We apply the Larson relation to estimate the velocity dispersions and crossing times of these structures. Our results indicate that the fractal nature of the young stellar structures has been inherited from the gas clouds from which they form and that this architecture is generated by supersonic turbulence. Our results also suggest that star formation in the LMC is scale-free from 10 to 700 pc. KW - methods: statistical KW - stars: early-type KW - stars: formation KW - galaxies: individual: Magellanic Clouds KW - galaxies: stellar content KW - galaxies: structure Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac508 SN - 0035-8711 SN - 1365-2966 VL - 512 IS - 1 SP - 1196 EP - 1213 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Krtička, Jiří A1 - Feldmeier, Achim T1 - Stochastic light variations in hot stars from wind instability BT - finding photometric signatures and testing against the TESS data JF - Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO) N2 - Context Line-driven wind instability is expected to cause small-scale wind inhomogeneities, X-ray emission, and wind line profile variability. The instability can already develop around the sonic point if it is initiated close to the photosphere due to stochastic turbulent motions. In such cases, it may leave its imprint on the light curve as a result of wind blanketing. Aims We study the photometric signatures of the line-driven wind instability. Methods We used line-driven wind instability simulations to determine the wind variability close to the star. We applied two types of boundary perturbations: a sinusoidal one that enables us to study in detail the development of the instability and a stochastic one given by a Langevin process that provides a more realistic boundary perturbation. We estimated the photometric variability from the resulting mass-flux variations. The variability was simulated assuming that the wind consists of a large number of independent conical wind sectors. We compared the simulated light curves with TESS light curves of OB stars that show stochastic variability. Results We find two typical signatures of line-driven wind instability in photometric data: a knee in the power spectrum of magnitude fluctuations, which appears due to engulfment of small-scale structure by larger structures, and a negative skewness of the distribution of fluctuations, which is the result of spatial dominance of rarefied regions. These features endure even when combining the light curves from independent wind sectors. Conclusions The stochastic photometric variability of OB stars bears certain signatures of the line-driven wind instability. The distribution function of observed photometric data shows negative skewness and the power spectra of a fraction of light curves exhibit a knee. This can be explained as a result of the line-driven wind instability triggered by stochastic base perturbations. KW - stars: winds KW - outflows KW - stars: mass-loss KW - stars: early-type KW - hydrodynamics KW - instabilities KW - stars: variables: general Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202040148 SN - 1432-0746 VL - 648 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Irrgang, Andreas A1 - Geier, Stephan A1 - Kreuzer, Simon A1 - Pelisoli, Ingrid Domingos A1 - Heber, Ulrich T1 - A stripped helium star in the potential black hole binary LB-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Context The recently claimed discovery of a massive (M-BH = 68(-13)(+11) M-circle dot) black hole in the Galactic solar neighborhood has led to controversial discussions because it severely challenges our current view of stellar evolution. Aims A crucial aspect for the determination of the mass of the unseen black hole is the precise nature of its visible companion, the B-type star LSV +22 25. Because stars of different mass can exhibit B-type spectra during the course of their evolution, it is essential to obtain a comprehensive picture of the star to unravel its nature and, thus, its mass. Methods To this end, we study the spectral energy distribution of LSV +22 25 and perform a quantitative spectroscopic analysis that includes the determination of chemical abundances for He, C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe. Results Our analysis clearly shows that LSV +22 25 is not an ordinary main sequence B-type star. The derived abundance pattern exhibits heavy imprints of the CNO bi-cycle of hydrogen burning, that is, He and N are strongly enriched at the expense of C and O. Moreover, the elements Mg, Al, Si, S, Ar, and Fe are systematically underabundant when compared to normal main-sequence B-type stars. We suggest that LSV +22 25 is a stripped helium star and discuss two possible formation scenarios. Combining our photometric and spectroscopic results with the Gaia parallax, we infer a stellar mass of 1.1 +/- 0.5 M-circle dot. Based on the binary system's mass function, this yields a minimum mass of 2-3 M-circle dot for the compact companion, which implies that it may not necessarily be a black hole but a massive neutron- or main sequence star. Conclusions The star LSV +22 25 has become famous for possibly having a very massive black hole companion. However, a closer look reveals that the star itself is a very intriguing object. Further investigations are necessary for complete characterization of this object. KW - stars: abundances KW - stars: chemically peculiar KW - stars: early-type KW - pulsars: individual: LS V+22 25 Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/201937343 SN - 0004-6361 SN - 1432-0746 VL - 633 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Vink, Jorick S. A1 - Hamann, Wolf-Rainer T1 - Driving classical Wolf-Rayet winds BT - a Gamma- and Z-dependent mass-loss JF - Monthly notices of the Royal Astronomical Society N2 - Classical Wolf-Rayet (cWR) stars are at a crucial evolutionary stage for constraining the fates of massive stars. The feedback of these hot, hydrogen-depleted stars dominates their surrounding by tremendous injections of ionizing radiation and kinetic energy. The strength of a Wolf-Rayet (WR) wind decides the eventual mass of its remnant, likely a massive black hole. However, despite their major influence and importance for gravitational wave detection statistics, WR winds are particularly poorly understood. In this paper, we introduce the first set of hydrodynamically consistent stellar atmosphere models for cWR stars of both the carbon (C) and the nitrogen (N) sequence, i.e. WC and WN stars, as a function of stellar luminosity-to-mass ratio (or Eddington Gamma) and metallicity. We demonstrate the inapplicability of the CAK wind theory for cWR stars and confirm earlier findings that their winds are launched at the (hot) iron (Fe) opacity peak. For log Z/Z(circle dot) > -2, Fe is also the main accelerator throughout the wind. Contrasting previous claims of a sharp lower mass-loss limit forWR stars, we obtain a smooth transition to optically thin winds. Furthermore, we find a strong dependence of the mass-loss rates on Eddington Gamma, both at solar and subsolar metallicity. Increases inWCcarbon and oxygen abundances turn out to slightly reduce the predicted mass-loss rates. Calculations at subsolar metallicities indicate that below the metallicity of the Small Magellanic Cloud, WR mass-loss rates decrease much faster than previously assumed, potentially allowing for high black hole masses even in the local Universe. KW - stars: atmospheres KW - stars: early-type KW - stars: fundamental parameters KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz3064 SN - 0035-8711 SN - 1365-2966 VL - 491 IS - 3 SP - 4406 EP - 4425 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hainich, Rainer A1 - Ramachandran, Varsha A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias A1 - Gruner, David A1 - Oskinova, Lidia M. A1 - Hamann, Wolf-Rainer T1 - PoWR grids of non-LTE model atmospheres for OB-type stars of various metallicities JF - Astronomy and astrophysics : an international weekly journal N2 - The study of massive stars in different metallicity environments is a central topic of current stellar research. The spectral analysis of massive stars requires adequate model atmospheres. The computation of such models is difficult and time-consuming. Therefore, spectral analyses are greatly facilitated if they can refer to existing grids of models. Here we provide grids of model atmospheres for OB-type stars at metallicities corresponding to the Small and Large Magellanic Clouds, as well as to solar metallicity. In total, the grids comprise 785 individual models. The models were calculated using the state-of-the-art Potsdam Wolf-Rayet (PoWR) model atmosphere code. The parameter domain of the grids was set up using stellar evolution tracks. For all these models, we provide normalized and flux-calibrated spectra, spectral energy distributions, feedback parameters such as ionizing photons, Zanstra temperatures, and photometric magnitudes. The atmospheric structures (the density and temperature stratification) are available as well. All these data are publicly accessible through the PoWR website. KW - stars: massive KW - stars: early-type KW - stars: atmospheres KW - stars: winds KW - outflows KW - stars: mass-loss KW - radiative transfer Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201833787 SN - 1432-0746 VL - 621 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Massa, Derck A1 - Oskinova, Lidia M. A1 - Prinja, Raman A1 - Ignace, Richard T1 - Coordinated UV and X-Ray Spectroscopic Observations of the O-type Giant xi Per BT - the Connection between X-Rays and Large-scale Wind Structure JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present new, contemporaneous Hubble Space Telescope STIS and XMM-Newton observations of the O7. III(n) ((f)) star xi Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of xi Per. The variable wind of this star is known to have a 2.086-day periodicity. We use a simple, heuristic spot model that fits the low-velocity (near-surface) IUE wind line variability very well, to demonstrate that the low-velocity absorption in the new STIS spectra of N IV lambda 1718 and Si IV lambda 1402 vary with the same 2.086-day period. It is remarkable that the period and amplitude of the STIS data agree with those of the IUE spectra obtained 22 yr earlier. We also show that the time variability of the new XMM-Newton fluxes is also consistent with the 2.086-day period. Thus, our new, multiwavelength coordinated observations demonstrate that the mechanism that causes the UV wind line variability is also responsible for a significant fraction of the X-rays in single O stars. The sequence of events for the multiwavelength light-curve minima is Si IV lambda 1402, N IV lambda 1718, and X-ray flux, each separated by a phase of about 0.06 relative to the 2.086-day period. Analysis of the X-ray fluxes shows that they become softer as they weaken. This is contrary to expectations if the variability is caused by periodic excess absorption. Furthermore, the high-resolution X-ray spectra suggest that the individual emission lines at maximum are more strongly blueshifted. If we interpret the low-velocity wind line light curves in terms of our model, it implies that there are two bright regions, i.e., regions with less absorption, separated by 180 degrees, on the surface of the star. We note that the presence and persistence of two spots separated by 180 degrees suggest that a weak dipole magnetic field is responsible for the variability of the UV wind line absorption and X-ray flux in xi Per. KW - stars: activity KW - stars: early-type KW - stars: winds, outflows KW - ultraviolet: stars KW - X-rays: stars Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/ab0283 SN - 0004-637X SN - 1538-4357 VL - 873 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Irrgang, Andreas A1 - Geier, Stephan A1 - Heber, Ulrich A1 - Kupfer, Thomas A1 - Fürst, F. T1 - PG 1610+062: a runaway B star challenging classical ejection mechanisms JF - Astronomy and astrophysics : an international weekly journal N2 - Hypervelocity stars are rare objects, mostly main-sequence (MS) B stars, traveling so fast that they will eventually escape from the Milky Way. Recently, it has been shown that the popular Hills mechanism, in which a binary system is disrupted via a close encounter with the supermassive black hole at the Galactic center, may not be their only ejection mechanism. The analyses of Gaia data ruled out a Galactic center origin for some of them, and instead indicated that they are extreme disk runaway stars ejected at velocities exceeding the predicted limits of classical scenarios (dynamical ejection from star clusters or binary supernova ejection). We present the discovery of a new extreme disk runaway star, PG 1610+062, which is a slowly pulsating B star bright enough to be studied in detail. A quantitative analysis of spectra taken with ESI at the Keck Observatory revealed that PG 1610+062 is a late B-type MS star of 4–5 M⊙ with low projected rotational velocity. Abundances (C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe) were derived differentially with respect to the normal B star HD 137366 and indicate that PG 1610+062 is somewhat metal rich. A kinematic analysis, based on our spectrophotometric distance (17.3 kpc) and on proper motions from Gaia’s second data release, shows that PG 1610+062 was probably ejected from the Carina-Sagittarius spiral arm at a velocity of 550 ± 40 km s−1, which is beyond the classical limits. Accordingly, the star is in the top five of the most extreme MS disk runaway stars and is only the second among the five for which the chemical composition is known. KW - stars: abundances KW - stars: individual: HD 137366 KW - stars: kinematics and dynamics KW - stars: individual: PG 1610+062 KW - stars: early-type Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935429 SN - 1432-0746 VL - 628 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Krticka, Jiri A1 - Feldmeier, Achim T1 - Light variations due to the line-driven wind instability and wind blanketing in O stars JF - Astronomy and astrophysics : an international weekly journal N2 - A small fraction of the radiative flux emitted by hot stars is absorbed by their winds and redistributed towards longer wavelengths. This effect, which leads also to the heating of the stellar photosphere, is termed wind blanketing. For stars with variable winds, the effect of wind blanketing may lead to the photometric variability. We have studied the consequences of line driven wind instability and wind blanketing for the light variability of O stars. We combined the results of wind hydrodynamic simulations and of global wind models to predict the light variability of hot stars due to the wind blanketing and instability. The wind instability causes stochastic light variability with amplitude of the order of tens of millimagnitudes and a typical timescale of the order of hours for spatially coherent wind structure. The amplitude is of the order of millimagnitudes when assuming that the wind consists of large number of independent concentric cones. The variability with such amplitude is observable using present space borne photometers. We show that the simulated light curve is similar to the light curves of O stars obtained using BRITE and CoRoT satellites. KW - stars: winds, outflows KW - stars: mass-loss KW - stars: early-type KW - stars: variables: general KW - hydrodynamics Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731614 SN - 1432-0746 VL - 617 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Fürst, F. A1 - Kretschmar, P. A1 - Oskinova, Lidia M. A1 - Todt, Helge Tobias A1 - Hainich, Rainer A1 - Shenar, Tomer A1 - Hamann, Wolf-Rainer T1 - Coupling hydrodynamics with comoving frame radiative transfer BT - Stellar wind stratification in the high-mass X-ray binary Vela X-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods. We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results. The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at u(infinity) approximate to 600 km s(-1). On the other hand, the wind velocity in the inner region where the NS is located is only approximate to 100 km s(-1), which is not expected on the basis of a standard beta-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions. Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB. KW - stars: mass-loss KW - stars: winds, outflows KW - stars: early-type KW - stars: atmospheres KW - stars: massive KW - X-rays: binaries Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731575 SN - 1432-0746 VL - 610 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Abdalla, Hassan E. A1 - Abramowski, A. A1 - Aharonian, Felix A. A1 - Benkhali, F. Ait A1 - Akhperjanian, A. G. A1 - Andersson, T. A1 - Anguener, E. O. A1 - Arakawa, M. A1 - Arrieta, M. A1 - Aubert, P. A1 - Backes, M. A1 - Balzer, A. A1 - Barnard, M. A1 - Becherini, Y. A1 - Tjus, J. Becker A1 - Berge, D. A1 - Bernhard, S. A1 - Bernloehr, K. A1 - Blackwell, R. A1 - Bottcher, M. A1 - Boisson, C. A1 - Bolmont, J. A1 - Bordas, Pol A1 - Bregeon, J. A1 - Brun, F. A1 - Brun, P. A1 - Bryan, M. A1 - Buechele, M. A1 - Bulik, T. A1 - Capasso, M. A1 - Carr, J. A1 - Casanova, Sabrina A1 - Cerruti, M. A1 - Chakraborty, N. A1 - Chalme-Calvet, R. A1 - Chaves, R. C. G. A1 - Chen, A. A1 - Chevalier, J. A1 - Chretien, M. A1 - Coffaro, M. A1 - Colafrancesco, S. A1 - Cologna, G. A1 - Condon, B. A1 - Conrad, J. A1 - Cui, Y. A1 - Davids, I. D. A1 - Decock, J. A1 - Degrange, B. A1 - Deil, C. A1 - Devin, J. A1 - deWilt, P. A1 - Dirson, L. A1 - Djannati-Atai, A. A1 - Domainko, W. A1 - Donath, A. A1 - Dutson, K. A1 - Dyks, J. A1 - Edwards, T. A1 - Egberts, Kathrin A1 - Eger, P. A1 - Ernenwein, J. -P. A1 - Eschbach, S. A1 - Farnier, C. A1 - Fegan, S. A1 - Fernandes, M. V. A1 - Fiasson, A. A1 - Fontaine, G. A1 - Foerster, A. A1 - Funk, S. A1 - Fuessling, M. A1 - Gabici, S. A1 - Gajdus, M. A1 - Gallant, Y. A. A1 - Garrigoux, T. A1 - Giavitto, G. A1 - Giebels, B. A1 - Glicenstein, J. F. A1 - Gottschall, D. A1 - Goyal, A. A1 - Grondin, M. -H. A1 - Hahn, J. A1 - Haupt, M. A1 - Hawkes, J. A1 - Heinzelmann, G. A1 - Henri, G. A1 - Hermann, G. A1 - Hervet, O. A1 - Hinton, J. A. A1 - Hofmann, W. A1 - Hoischen, Clemens A1 - Holler, M. A1 - Horns, D. A1 - Ivascenko, A. A1 - Iwasaki, H. A1 - Jacholkowska, A. A1 - Jamrozy, M. A1 - Janiak, M. A1 - Jankowsky, D. A1 - Jankowsky, F. A1 - Jingo, M. A1 - Jogler, T. A1 - Jouvin, L. A1 - Jung-Richardt, I. A1 - Kastendieck, M. A. A1 - Katarzynski, K. A1 - Katsuragawa, M. A1 - Katz, U. A1 - Kerszberg, D. A1 - Khangulyan, D. A1 - Khelifi, B. A1 - Kieffer, M. A1 - King, J. A1 - Klepser, S. A1 - Klochkov, D. A1 - Kluzniak, W. A1 - Kolitzus, D. A1 - Komin, Nu. A1 - Kosack, K. A1 - Krakau, S. A1 - Kraus, M. A1 - Kruger, P. P. A1 - Laffon, H. A1 - Lamanna, G. A1 - Lau, J. A1 - Lees, J. -P. A1 - Lefaucheur, J. A1 - Lefranc, V. A1 - Lemiere, A. A1 - Lemoine-Goumard, M. A1 - Lenain, J. -P. A1 - Leser, Eva A1 - Lohse, T. A1 - Lorentz, M. A1 - Liu, R. A1 - Lopez-Coto, R. A1 - Lypova, I. A1 - Marandon, V. A1 - Marcowith, Alexandre A1 - Mariaud, C. A1 - Marx, R. A1 - Maurin, G. A1 - Maxted, N. A1 - Mayer, M. A1 - Meintjes, P. J. A1 - Meyer, M. A1 - Mitchell, A. M. W. A1 - Moderski, R. A1 - Mohamed, M. A1 - Mohrmann, L. A1 - Mora, K. A1 - Moulin, Emmanuel A1 - Murach, T. A1 - Nakashima, S. A1 - de Naurois, M. A1 - Niederwanger, F. A1 - Niemiec, J. A1 - Oakes, L. A1 - Odaka, H. A1 - Oettl, S. A1 - Ohm, S. A1 - Ostrowski, M. A1 - Oya, I. A1 - Padovani, M. A1 - Panter, M. A1 - Parsons, R. D. A1 - Pekeur, N. W. A1 - Pelletier, G. A1 - Perennes, C. A1 - Petrucci, P. -O. A1 - Peyaud, B. A1 - Piel, Q. A1 - Pita, S. A1 - Poon, H. A1 - Prokhorov, D. A1 - Prokoph, H. A1 - Puehlhofer, G. A1 - Punch, M. A1 - Quirrenbach, A. A1 - Raab, S. A1 - Reimer, A. A1 - Reimer, O. A1 - Renaud, M. A1 - de los Reyes, R. A1 - Richter, S. A1 - Rieger, F. A1 - Romoli, C. A1 - Rowell, G. A1 - Rudak, B. A1 - Rulten, C. B. A1 - Sahakian, V. A1 - Saito, S. A1 - Salek, D. A1 - Sanchez, D. A. A1 - Santangelo, Andrea A1 - Sasaki, M. A1 - Schlickeiser, R. A1 - Schussler, F. A1 - Schulz, A. A1 - Schwanke, U. A1 - Schwemmer, S. A1 - Seglar-Arroyo, M. A1 - Settimo, M. A1 - Seyffert, A. S. A1 - Shafi, N. A1 - Shilon, I. A1 - Simoni, R. A1 - Sol, H. A1 - Spanier, F. A1 - Spengler, G. A1 - Spies, F. A1 - Stawarz, L. A1 - Steenkamp, R. A1 - Stegmann, Christian Michael A1 - Stycz, K. A1 - Sushch, I. A1 - Takahashi, T. A1 - Tavernet, J. -P. A1 - Tavernier, T. A1 - Taylor, A. M. A1 - Terrier, R. A1 - Tibaldo, L. A1 - Tiziani, D. A1 - Tluczykont, M. A1 - Trichard, C. A1 - Tsuji, N. A1 - Tuffs, R. A1 - Uchiyama, Y. A1 - van der Walt, D. J. A1 - van Eldik, C. A1 - van Rensburg, C. A1 - van Soelen, B. A1 - Vasileiadis, G. A1 - Veh, J. A1 - Venter, C. A1 - Viana, A. A1 - Vincent, P. A1 - Vink, J. A1 - Voisin, F. A1 - Voelk, H. J. A1 - Vuillaume, T. A1 - Wadiasingh, Z. A1 - Wagner, S. J. A1 - Wagner, P. A1 - Wagner, R. M. A1 - White, R. A1 - Wierzcholska, A. A1 - Willmann, P. A1 - Woernlein, A. A1 - Wouters, D. A1 - Yang, R. A1 - Zabalza, V. A1 - Zaborov, D. A1 - Zacharias, M. A1 - Zanin, R. A1 - Zdziarski, A. A. A1 - Zech, Alraune A1 - Zefi, F. A1 - Ziegler, A. A1 - Zywucka, N. T1 - Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E >= 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aims. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods. Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results. None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions. Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV. The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy. KW - radiation mechanisms: non-thermal KW - gamma rays: ISM KW - stars: early-type KW - gamma rays: stars Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201630151 SN - 1432-0746 VL - 612 PB - EDP Sciences CY - Les Ulis ER -