TY - JOUR A1 - Hennig, Theresa A1 - Kühn, Michael T1 - Surrogate model for multi-component diffusion of Uranium through Opalinus Clay on the host rock scale JF - Applied Sciences : open access journal N2 - Multi-component (MC) diffusion simulations enable a process based and more precise approach to calculate transport and sorption compared to the commonly used single-component (SC) models following Fick's law. The MC approach takes into account the interaction of chemical species in the porewater with the diffuse double layer (DDL) adhering clay mineral surfaces. We studied the shaly, sandy and carbonate-rich facies of the Opalinus Clay. High clay contents dominate diffusion and sorption of uranium. The MC simulations show shorter diffusion lengths than the SC models due to anion exclusion from the DDL. This hampers diffusion of the predominant species CaUO2(CO3)32-. On the one side, species concentrations and ionic strengths of the porewater and on the other side surface charge of the clay minerals control the composition and behaviour of the DDL. For some instances, it amplifies the diffusion of uranium. We developed a workflow to transfer computationally intensive MC simulations to SC models via calibrated effective diffusion and distribution coefficients. Simulations for one million years depict maximum uranium diffusion lengths between 10 m and 35 m. With respect to the minimum requirement of a thickness of 100 m, the Opalinus Clay seems to be a suitable host rock for nuclear waste repositories. KW - facies KW - uranium speciation KW - sorption KW - reactive transport KW - heterogeneity KW - PHREEQC KW - Mont Terri KW - repository far-field Y1 - 2021 U6 - https://doi.org/10.3390/app11020786 SN - 2076-3417 VL - 11 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Steding, Svenja A1 - Kempka, Thomas A1 - Kühn, Michael T1 - How insoluble inclusions and intersecting layers affect the leaching process within potash seams JF - Applied Sciences : open access journal N2 - Potash seams are a valuable resource containing several economically interesting, but also highly soluble minerals. In the presence of water, uncontrolled leaching can occur, endangering subsurface mining operations. In the present study, the influence of insoluble inclusions and intersecting layers on leaching zone evolution was examined by means of a reactive transport model. For that purpose, a scenario analysis was carried out, considering different rock distributions within a carnallite-bearing potash seam. The results show that reaction-dominated systems are not affected by heterogeneities at all, whereas transport-dominated systems exhibit a faster advance in homogeneous rock compositions. In return, the ratio of permeated rock in vertical direction is higher in heterogeneous systems. Literature data indicate that most natural potash systems are transport-dominated. Accordingly, insoluble inclusions and intersecting layers can usually be seen as beneficial with regard to reducing hazard potential as long as the mechanical stability of leaching zones is maintained. Thereby, the distribution of insoluble areas is of minor impact unless an inclined, intersecting layer occurs that accelerates leaching zone growth in one direction. Moreover, it is found that the saturation dependency of dissolution rates increases the growth rate in the long term, and therefore must be considered in risk assessments. KW - salt dissolution KW - reactive transport KW - heterogeneity KW - density-driven KW - convection KW - PHREEQC KW - porous media Y1 - 2021 U6 - https://doi.org/10.3390/app11199314 SN - 2076-3417 VL - 11 IS - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hennig, Theresa A1 - Kühn, Michael T1 - Potential uranium migration within the geochemical gradient of the opalinus clay system at the Mont Terri JF - Minerals N2 - Transport properties of potential host rocks for nuclear waste disposal are typically determined in laboratory or in-situ experiments under geochemically controlled and constant conditions. Such a homogeneous assumption is no longer applicable on the host rock scale as can be seen from the pore water profiles of the potential host rock Opalinus Clay at Mont Terri (Switzerland). The embedding aquifers are the hydro-geological boundaries, that established gradients in the 210 m thick low permeable section through diffusive exchange over millions of years. Present-day pore water profiles were confirmed by a data-driven as well as by a conceptual scenario. Based on the modelled profiles, the influence of the geochemical gradient on uranium migration was quantified by comparing the distances after one million years with results of common homogeneous models. Considering the heterogeneous system, uranium migrated up to 24 m farther through the formation depending on the source term position within the gradient and on the partial pressure of carbon dioxide pCO2 of the system. Migration lengths were almost equal for single- and multicomponent diffusion. Differences can predominantly be attributed to changes in the sorption capacity, whereby pCO2 governs how strong uranium migration is affected by the geochemical gradient. Thus, the governing parameters for uranium migration in the Opalinus Clay can be ordered in descending priority: pCO2, geochemical gradients, mineralogical heterogeneity.

KW - PHREEQC KW - reactive transport KW - sorption KW - diffusion KW - repository far-field KW - hydro-geological system Y1 - 2021 U6 - https://doi.org/10.3390/min11101087 SN - 2075-163X VL - 11 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tranter, Morgan Alan A1 - De Lucia, Marco A1 - Kühn, Michael T1 - Barite scaling potential modelled for fractured-porous geothermal reservoirs JF - Minerals N2 - Barite scalings are a common cause of permanent formation damage to deep geothermal reservoirs. Well injectivity can be impaired because the ooling of saline fluids reduces the solubility of barite, and the continuous re-injection of supersaturated fluids forces barite to precipitate in the host rock. Stimulated reservoirs in the Upper Rhine Graben often have multiple relevant flow paths in the porous matrix and fracture zones, sometimes spanning multiple stratigraphical units to achieve the economically necessary injectivity. While the influence of barite scaling on injectivity has been investigated for purely porous media, the role of fractures within reservoirs consisting of both fractured and porous sections is still not well understood. Here, we present hydro-chemical simulations of a dual-layer geothermal reservoir to study the long-term impact of barite scale formation on well injectivity. Our results show that, compared to purely porous reservoirs, fractured porous reservoirs have a significantly reduced scaling risk by up to 50%, depending on the flow rate ratio of fractures. Injectivity loss is doubled, however, if the amount of active fractures is increased by one order of magnitude, while the mean fracture aperture is decreased, provided the fractured aquifer dictates the injection rate. We conclude that fractured, and especially hydraulically stimulated, reservoirs are generally less affected by barite scaling and that large, but few, fractures are favourable. We present a scaling score for fractured-porous reservoirs, which is composed of easily derivable quantities such as the radial equilibrium length and precipitation potential. This score is suggested for use approximating the scaling potential and its impact on injectivity of a fractured-porous reservoir for geothermal exploitation. KW - reactive transport KW - radial flow KW - geothermal energy KW - injectivity KW - phreeqc KW - formation damage Y1 - 2021 U6 - https://doi.org/10.3390/min11111198 SN - 2075-163X VL - 11 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hennig, Theresa A1 - Stockmann, Madlen A1 - Kühn, Michael T1 - Simulation of diffusive uranium transport and sorption processes in the Opalinus Clay JF - Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry N2 - Diffusive transport and sorption processes of uranium in the Swiss Opalinus Clay were investigated as a function of partial pressure of carbon dioxide pCO(2), varying mineralogy in the facies and associated changes in porewater composition. Simulations were conducted in one-dimensional diffusion models on the 100 m-scale for a time of one million years using a bottom-up approach based on mechanistic surface complexation models as well as cation exchange to quantify sorption. Speciation calculations have shown, uranium is mainly present as U(VI) and must therefore be considered as mobile for in-situ conditions. Uranium migrated up to 26 m in both, the sandy and the carbonate-rich facies, whereas in the shaly facies 16 m was the maximum. The main species was the anionic complex CaUO2(CO3)(3)(2-) . Hence, anion exclusion was taken into account and further reduced the migration distances by 30 %. The concentrations of calcium and carbonates reflected by the set pCO(2) determine speciation and activity of uranium and consequently the sorption behaviour. Our simulation results allow for the first time to prioritize on the far-field scale the governing parameters for diffusion and sorption of uranium and hence outline the sensitivity of the system. Sorption processes are controlled in descending priority by the carbonate and calcium concentrations, pH, pe and the clay mineral content. Therefore, the variation in porewater composition resulting from the heterogeneity of the facies in the Opalinus Clay formation needs to be considered in the assessment of uranium migration in the far field of a potential repository. KW - reactive transport KW - facies KW - heterogeneity KW - carbonate KW - PHREEQC KW - Mont Terri KW - speciation Y1 - 2020 U6 - https://doi.org/10.1016/j.apgeochem.2020.104777 SN - 0883-2927 SN - 1872-9134 VL - 123 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Tranter, Morgan Alan A1 - De Lucia, Marco A1 - Wolfgramm, Markus A1 - Kühn, Michael T1 - Barite scale formation and injectivity loss models for geothermal systems JF - Water N2 - Barite scales in geothermal installations are a highly unwanted effect of circulating deep saline fluids. They build up in the reservoir if supersaturated fluids are re-injected, leading to irreversible loss of injectivity. A model is presented for calculating the total expected barite precipitation. To determine the related injectivity decline over time, the spatial precipitation distribution in the subsurface near the injection well is assessed by modelling barite growth kinetics in a radially diverging Darcy flow domain. Flow and reservoir properties as well as fluid chemistry are chosen to represent reservoirs subject to geothermal exploration located in the North German Basin (NGB) and the Upper Rhine Graben (URG) in Germany. Fluids encountered at similar depths are hotter in the URG, while they are more saline in the NGB. The associated scaling amount normalised to flow rate is similar for both regions. The predicted injectivity decline after 10 years, on the other hand, is far greater for the NGB (64%) compared to the URG (24%), due to the temperature- and salinity-dependent precipitation rate. The systems in the NGB are at higher risk. Finally, a lightweight score is developed for approximating the injectivity loss using the Damkohler number, flow rate and total barite scaling potential. This formula can be easily applied to geothermal installations without running complex reactive transport simulations. KW - reactive transport KW - radial flow KW - geothermal energy KW - scaling KW - phreeqc KW - formation damage Y1 - 2020 U6 - https://doi.org/10.3390/w12113078 SN - 2073-4441 VL - 12 IS - 11 PB - MDPI CY - Basel ER -