TY - JOUR A1 - Robinson, Matthew Scott A1 - Niebuhr, Mario A1 - Lever, Fabiano A1 - Mayer, Dennis A1 - Metje, Jan A1 - Gühr, Markus T1 - Ultrafast photo-ion probing of the ring-opening process in trans-stilbene oxide JF - Chemistry - a European journal N2 - The ultrafast photo-induced ring opening of the oxirane derivative trans-stilbene oxide has been studied through the use of ultrafast UV/UV pump-probe spectroscopy by using photo-ion detection. Single- and multiphoton probe paths and final states were identified through comparisons between UV power studies and synchrotron-based vacuum ultraviolet (VUV) single-photon ionization studies. Three major time-dependent features of the parent ion (sub-450 fs decay, (1.5 +/- 0.2) ps, and >100 ps) were observed. These decays are discussed in conjunction with the primary ring-opening mechanism of stilbene oxide, which occurs through C-C dissociation in the oxirane ring. The appearance of fragments relating to the masses of dehydrogenated diphenylmethane (167 amu) and dehydrogenated methylbenzene (90 amu) were also investigated. The appearance of the 167 amu fragment could suggest an alternative ultrafast ring-opening pathway via the dissociation of one of the C-O bonds within the oxirane ring. KW - femtochemistry KW - mass spectrometry KW - photochemistry KW - small ring systems KW - stilbene oxide Y1 - 2021 U6 - https://doi.org/10.1002/chem.202101343 SN - 1521-3765 VL - 27 IS - 44 SP - 11418 EP - 11427 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Fudickar, Werner A1 - Bauch, Marcel A1 - Ihmels, Heiko A1 - Linker, Torsten T1 - DNA-triggered enhancement of singlet oxygen production by pyridinium alkynylanthracenes JF - Chemistry - a European journal N2 - There is an ongoing interest in O-1(2) sensitizers, whose activity is selectively controlled by their interaction with DNA. To this end, we synthesized three isomeric pyridinium alkynylanthracenes 2 o-p and a water-soluble trapping reagent for O-1(2). In water and in the absence of DNA, these dyes show a poor efficiency to sensitize the photooxygenation of the trapping reagent as they decompose due to electron transfer processes. In contrast, in the presence of DNA O-1(2) is generated from the excited DNA-bound ligand. The interactions of 2 o-p with DNA were investigated by thermal DNA melting studies, UV/vis and fluorescence spectroscopy, and linear and circular dichroism spectroscopy. Our studies revealed an intercalative binding with an orientation of the long pyridyl-alkynyl axis parallel to the main axis of the DNA base pairs. In the presence of poly(dA : dT), all three isomers show an enhanced formation of singlet oxygen, as indicated by the reaction of the latter with the trapping reagent. With green light irradiation of isomer 2 o in poly(dA : dT), the conversion rate of the trapping reagent is enhanced by a factor >10. The formation of O-1(2) was confirmed by control experiments under anaerobic conditions, in deuterated solvents, or by addition of O-1(2) quenchers. When bound to poly(dG : dC), the opposite effect was observed only for isomers 2 o and 2 m, namely the trapping reagent reacted significantly slower. Overall, we showed that pyridinium alkynylanthracenes are very useful intercalators, that exhibit an enhanced photochemical O-1(2) generation in the DNA-bound state. KW - Anthracene KW - DNA KW - intercalations KW - photochemistry KW - singlet oxygen Y1 - 2021 U6 - https://doi.org/10.1002/chem.202101918 SN - 1521-3765 VL - 27 IS - 54 SP - 13591 EP - 13604 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Prüfert, Chris A1 - Urban, Raphael David A1 - Fischer, Tillmann Georg A1 - Villatoro, José Andrés A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Belder, Detlev A1 - Zeitler, Kirsten A1 - Löhmannsröben, Hans-Gerd T1 - In situ monitoring of photocatalyzed isomerization reactions on a microchip flow reactor by IR-MALDI ion mobility spectrometry JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - The visible-light photocatalyticE/Zisomerization of olefins can be mediated by a wide spectrum of triplet sensitizers (photocatalysts). However, the search for the most efficient photocatalysts through screenings in photo batch reactors is material and time consuming. Capillary and microchip flow reactors can accelerate this screening process. Combined with a fast analytical technique for isomer differentiation, these reactors can enable high-throughput analyses. Ion mobility (IM) spectrometry is a cost-effective technique that allows simple isomer separation and detection on the millisecond timescale. This work introduces a hyphenation method consisting of a microchip reactor and an infrared matrix-assisted laser desorption ionization (IR-MALDI) ion mobility spectrometer that has the potential for high-throughput analysis. The photocatalyzedE/Zisomerization of ethyl-3-(pyridine-3-yl)but-2-enoate (E-1) as a model substrate was chosen to demonstrate the capability of this device. Classic organic triplet sensitizers as well as Ru-, Ir-, and Cu-based complexes were tested as catalysts. The ionization efficiency of theZ-isomer is much higher at atmospheric pressure which is due to a higher proton affinity. In order to suppress proton transfer reactions by limiting the number of collisions, an IM spectrometer working at reduced pressure (max. 100 mbar) was employed. This design reduced charge transfer reactions and allowed the quantitative determination of the reaction yield in real time. Among 14 catalysts tested, four catalysts could be determined as efficient sensitizers for theE/Zisomerization of ethyl cinnamate derivativeE-1. Conversion rates of up to 80% were achieved in irradiation time sequences of 10 up to 180 s. With respect to current studies found in the literature, this reduces the acquisition times from several hours to only a few minutes per scan. KW - microchip KW - reaction monitoring KW - IR-MALDI KW - ion mobility spectrometry KW - photochemistry KW - photocatalysis KW - Olefin isomerization Y1 - 2020 U6 - https://doi.org/10.1007/s00216-020-02923-y SN - 1618-2642 SN - 1618-2650 VL - 412 IS - 28 SP - 7899 EP - 7911 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Kotthoff, Lisa A1 - O'Callaghan, Sarah-Louise A1 - Lisec, Jan A1 - Schwerdtle, Tanja A1 - Koch, Matthias T1 - Structural annotation of electro- and photochemically generated transformation products of moxidectin using high-resolution mass spectrometry JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - Moxidectin (MOX) is a widely used anthelmintic drug for the treatment of internal and external parasites in food-producing and companion animals. Transformation products (TPs) of MOX, formed through metabolic degradation or acid hydrolysis, may pose a potential environmental risk, but only few were identified so far. In this study, we therefore systematically characterized electro- and photochemically generated MOX TPs using high-resolution mass spectrometry (HRMS). Oxidative electrochemical (EC) TPs were generated in an electrochemical reactor and photochemical (PC) TPs by irradiation with UV-C light. Subsequent HRMS measurements were performed to identify accurate masses and deduce occurring modification reactions of derived TPs in a suspected target analysis. In total, 26 EC TPs and 59 PC TPs were found. The main modification reactions were hydroxylation, (de-)hydration, and derivative formation with methanol for EC experiments and isomeric changes, (de-)hydration, and changes at the methoxime moiety for PC experiments. In addition, several combinations of different modification reactions were identified. For 17 TPs, we could predict chemical structures through interpretation of acquired MS/MS data. Most modifications could be linked to two specific regions of MOX. Some previously described metabolic reactions like hydroxylation or O-demethylation were confirmed in our EC and PC experiments as reaction type, but the corresponding TPs were not identical to known metabolites or degradation products. The obtained knowledge regarding novel TPs and reactions will aid to elucidate the degradation pathway of MOX which is currently unknown. KW - veterinary drug KW - moxidectin KW - transformation products KW - electrochemistry KW - photochemistry KW - LC KW - HRMS Y1 - 2020 U6 - https://doi.org/10.1007/s00216-020-02572-1 SN - 1618-2642 SN - 1618-2650 VL - 412 IS - 13 SP - 3141 EP - 3152 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Jay, Raphael M. A1 - Eckert, Sebastian A1 - Mitzner, Rolf A1 - Fondell, Mattis A1 - Föhlisch, Alexander T1 - Quantitative evaluation of transient valence orbital occupations in a 3d transition metal complex as seen from the metal and ligand perspective JF - Chemical physics letters N2 - It is demonstrated for the case of photo-excited ferrocyanide how time-resolved soft X-ray absorption spectroscopy in transmission geometry at the ligand K-edge and metal L-3-edge provides quantitatively equivalent valence electronic structure information, where signatures of photo-oxidation are assessed locally at the metal as well as the ligand. This allows for a direct and independent quantification of the number of photo-oxidized molecules at two soft X-ray absorption edges highlighting the sensitivity of X-ray absorption spectroscopy to the valence orbital occupation of 3d transition metal complexes throughout the soft X-ray range. KW - iron cyanides KW - photochemistry KW - soft X-ray absorption Y1 - 2020 U6 - https://doi.org/10.1016/j.cplett.2020.137681 SN - 0009-2614 SN - 1873-4448 VL - 754 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Eckert, Sebastian A1 - Norell, Jesper A1 - Jay, Raphael Martin A1 - Fondell, Mattis A1 - Mitzner, Rolf A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - T-1 Population as the Driver of Excited-State Proton-Transfer in 2-Thiopyridone JF - Chemistry - a European journal N2 - Excited-state proton transfer (ESPT) is a fundamental process in biomolecular photochemistry, but its underlying mediators often evade direct observation. We identify a distinct pathway for ESPT in aqueous 2-thiopyridone, by employing transient N1s X-ray absorption spectroscopy and multi-configurational spectrum simulations. Photoexcitations to the singlet S-2 and S-4 states both relax promptly through intersystem crossing to the triplet T-1 state. The T-1 state, through its rapid population and near nanosecond lifetime, mediates nitrogen site deprotonation by ESPT in a secondary intersystem crossing to the S-0 potential energy surface. This conclusively establishes a dominant ESPT pathway for the system in aqueous solution, which is also compatible with previous measurements in acetonitrile. Thereby, the hitherto open questions of the pathway for ESPT in the compound, including its possible dependence on excitation wavelength and choice of solvent, are resolved. KW - excited-state proton-transfer KW - intersystem crossing KW - nitrogen KW - photochemistry KW - X-ray absorption Y1 - 2019 U6 - https://doi.org/10.1002/chem.201804166 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 7 SP - 1733 EP - 1739 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jay, Raphael Martin A1 - Eckert, Sebastian A1 - Vaz da Cruz, Vinicius A1 - Fondell, Mattis A1 - Mitzner, Rolf A1 - Föhlisch, Alexander T1 - Covalency-driven preservation of local charge densities in a metal-to-ligand charge-transfer excited iron photosensitizer JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Charge-density rearrangements after metal-to-ligand charge-transfer excitation in an iron photosensitizer are investigated by R. M Jay, A. Fohlisch et al. in their Communication (DOI: 10.1002/anie.201904761). By using time-resolved X-ray absorption spectroscopy, surprising covalency-effects are revealed that inhibit charge-separation at the intra-molecular level. Furthermore, the underlying mechanism is proposed to be generally in effect for all commonly used photosensitizers in light-harvesting applications, which challenges the common perception of electronic charge-transfer. KW - charge-transfer KW - density functional calculations KW - iron KW - photochemistry KW - X-ray absorption spectroscopy Y1 - 2019 U6 - https://doi.org/10.1002/anie.201904761 SN - 1433-7851 SN - 1521-3773 VL - 58 IS - 31 SP - 10742 EP - 10746 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Weis, Philipp A1 - Hess, Andreas A1 - Kircher, Gunnar A1 - Huang, Shilin A1 - Auernhammer, Günter K. A1 - Koynov, Kaloian A1 - Butt, Hans-Jürgen A1 - Wu, Si T1 - Effects of Spacers on Photoinduced Reversible Solid-to-Liquid Transitions of Azobenzene-Containing Polymers JF - Chemistry - a European journal N2 - Photoisomerization in some azobenzene-containing polymers (azopolymers) results in reversible solid-to-liquid transitions because trans- and cis-azopolymers have different glass transition temperatures. This property enables photoinduced healing and processing of azopolymers with high spatiotemporal resolution. However, a general lack of knowledge about the influence of the polymer structure on photoinduced reversible solid-to-liquid transitions hinders the design of such novel polymers. Herein, the synthesis and photoresponsive behavior of new azopolymers with different lengths of spacers between the polymer backbone and the azobenzene group on the side chain are reported. Azopolymers with no and 20 methylene spacers did not show photoinduced solid-to-liquid transitions. Azopolymers with 6 or 12 methylene spacers showed photoinduced solid-to-liquid transitions. This study demonstrates that spacers are essential for azopolymers with photoinduced reversible solid-to-liquid transitions, and thus, gives an insight into how to design azopolymers for photoinduced healing and processing. KW - azobenzenes KW - isomerization KW - photochemistry KW - polymers KW - self-healing Y1 - 2019 U6 - https://doi.org/10.1002/chem.201902273 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 46 SP - 10946 EP - 10953 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hardy, John G. A1 - Bertin, Annabelle A1 - Torres-Rendon, Jose Guillermo A1 - Leal-Egana, Aldo A1 - Humenik, Martin A1 - Bauer, Felix A1 - Walther, Andreas A1 - Cölfen, Helmut A1 - Schlaad, Helmut A1 - Scheibel, Thomas R. T1 - Facile photochemical modification of silk protein-based biomaterials JF - Macromolecular bioscience N2 - Silk protein-based materials show promise for application as biomaterials for tissue engineering. The simple and rapid photochemical modification of silk protein-based materials composed of either Bombyx mori silkworm silk or engineered spider silk proteins (eADF4(C16)) is reported. Radicals formed on the silk-based materials initiate the polymerization of monomers (acrylic acid, methacrylic acid, or allylamine) which functionalize the surface of the silk materials with poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), or poly(allylamine) (PAAm). To demonstrate potential applications of this type of modification, the polymer-modified silks are mineralized. The PAA- and PMAA-functionalized silks are mineralized with calcium carbonate, whereas the PAAm-functionalized silks are mineralized with silica, both of which provide a coating on the materials that may be useful for bone tissue engineering, which will be the subject of future investigations. KW - biomaterials KW - chemical modification KW - photochemistry KW - silkworm silk KW - spider silk Y1 - 2018 U6 - https://doi.org/10.1002/mabi.201800216 SN - 1616-5187 SN - 1616-5195 VL - 18 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Matic, Aleksandar A1 - Schlaad, Helmut T1 - Thiol-ene photofunctionalization of 1,4-polymyrcene JF - Polymer international N2 - 1,4-Polymyrcene was synthesized by anionic polymerization of -myrcene and was subjected to photochemical functionalization with various thiols (i.e. methyl thioglycolate, methyl 3-mercaptopropionate, butyl 3-mercaptopropionate, ethyl 2-mercaptopropionate and 2-methyl-2-propanethiol) using benzophenone/UV light as the radical source. The yield of thiol addition to the trisubstituted double bonds of 1,4-polymyrcene decreased in the order 1 degrees thiol (ca 95%) > 2 degrees thiol (ca 80%) > 3 degrees thiol (<5%), due to the reversibility of the thiol-ene reaction. Remarkably, thiol addition to the side-chain double bonds was 8 - 10 times (1 degrees thiol) or 24 times (2 degrees thiol) faster than to the main-chain double bonds, which can be explained by the different accessibility of the double bonds and steric hindrance. Despite the use of a 10-fold excess of thiol with respect to myrcene units, the thiol-ene addition was accompanied by chain coupling reactions, which in the extreme case of 3 degrees thiol (or in the absence of thiol) resulted in the formation of insoluble crosslinked material. As an example, a methyl-thioglycolate-functionalized 1,4-polymyrcene was saponified/crosslinked to give submicron polyelectrolyte particles in dilute alkaline solution. (c) 2018 Society of Chemical Industry KW - polymyrcene KW - thiol-ene KW - photochemistry KW - regioselectivity Y1 - 2018 U6 - https://doi.org/10.1002/pi.5534 SN - 0959-8103 SN - 1097-0126 VL - 67 IS - 5 SP - 500 EP - 505 PB - Wiley CY - Hoboken ER -