TY - JOUR A1 - Hoke, Alexa A1 - Woodhouse, Jason Nicholas A1 - Zoccarato, Luca A1 - McCarthy, Valerie A1 - de Eyto, Elvira A1 - Caldero-Pascual, Maria A1 - Geffroy, Ewan A1 - Dillane, Mary A1 - Grossart, Hans-Peter A1 - Jennings, Eleanor T1 - Impacts of extreme weather events on bacterial community composition of a temperate humic lake JF - Water N2 - Extreme weather events are projected to increase in frequency and intensity as climate change continues. Heterotrophic bacteria play a critical role in lake ecosystems, yet little research has been done to determine how they are affected by such extremes. The purpose of this study was to use high-throughput sequencing to explore the bacterial community composition of a humic oligotrophic lake on the North Atlantic Irish coast and to assess the impacts on composition dynamics related to extreme weather events. Samples for sequencing were collected from Lough Feeagh on a fortnightly basis from April to November 2018. Filtration was used to separate free-living and particle-associated bacterial communities and amplicon sequencing was performed for the 16S rRNA V4 region. Two named storms, six high discharge events, and one drought period occurred during the sampling period. These events had variable, context-dependent effects on bacterial communities in Lough Feeagh. The particle-associated community was found to be more likely to respond to physical changes, such as mixing, while the free-living population responded to changes in nutrient and carbon concentrations. Generally, however, the high stability of the bacterial community observed in Lough Feeagh suggests that the bacterial community is relatively resilient to extreme weather events. KW - extreme weather event KW - storm KW - drought KW - bacteria KW - free-living KW - particle-associated KW - humic lake Y1 - 2020 U6 - https://doi.org/10.3390/w12102757 SN - 2073-4441 VL - 12 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mestre, Mireia A1 - Ferrera, Isabel A1 - Borrull, Encarna A1 - Ortega-Retuerta, Eva A1 - Mbedi, Susan A1 - Grossart, Hans-Peter A1 - Gasol, Josep M. A1 - Sala, M. Montserrat T1 - Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum JF - Molecular ecology N2 - Biotic and abiotic particles shape the microspatial architecture that defines the microbial aquatic habitat, being particles highly variable in size and quality along oceanic horizontal and vertical gradients. We analysed the prokaryotic (bacterial and archaeal) diversity and community composition present in six distinct particle size classes ranging from the pico-to the microscale (0.2 to 200 lm). Further, we studied their variations along oceanographic horizontal (from the coast to open oceanic waters) and vertical (from the ocean surface into the meso-and bathypelagic ocean) gradients. In general, prokaryotic community composition was more variable with depth than in the transition from the coast to the open ocean. Comparing the six size-fractions, distinct prokaryotic communities were detected in each size-fraction, and whereas bacteria were more diverse in the larger size-fractions, archaea were more diverse in the smaller size-fractions. Comparison of prokaryotic community composition among particle size-fractions showed that most, but not all, taxonomic groups have a preference for a certain size-fraction sustained with depth. Species sorting, or the presence of diverse ecotypes with distinct size-fraction preferences, may explain why this trend is not conserved in all taxa. KW - attached KW - free-living KW - particulate matter KW - prokaryotic community KW - spatial variability Y1 - 2017 U6 - https://doi.org/10.1111/mec.14421 SN - 0962-1083 SN - 1365-294X VL - 26 SP - 6827 EP - 6840 PB - Wiley CY - Hoboken ER -