TY - JOUR A1 - Marufu, Anesu M. C. A1 - Kayem, Anne Voluntas dei Massah A1 - Wolthusen, Stephen D. T1 - The design and classification of cheating attacks on power marketing schemes in resource constrained smart micro-grids JF - Smart Micro-Grid Systems Security and Privacy N2 - In this chapter, we provide a framework to specify how cheating attacks can be conducted successfully on power marketing schemes in resource constrained smart micro-grids. This is an important problem because such cheating attacks can destabilise and in the worst case result in a breakdown of the micro-grid. We consider three aspects, in relation to modelling cheating attacks on power auctioning schemes. First, we aim to specify exactly how in spite of the resource constrained character of the micro-grid, cheating can be conducted successfully. Second, we consider how mitigations can be modelled to prevent cheating, and third, we discuss methods of maintaining grid stability and reliability even in the presence of cheating attacks. We use an Automated-Cheating-Attack (ACA) conception to build a taxonomy of cheating attacks based on the idea of adversarial acquisition of surplus energy. Adversarial acquisitions of surplus energy allow malicious users to pay less for access to more power than the quota allowed for the price paid. The impact on honest users, is the lack of an adequate supply of energy to meet power demand requests. We conclude with a discussion of the performance overhead of provoking, detecting, and mitigating such attacks efficiently. KW - Smart micro-grids KW - Cheating attacks KW - Power auctioning Y1 - 2018 SN - 978-3-319-91427-5 SN - 978-3-319-91426-8 U6 - https://doi.org/10.1007/978-3-319-91427-5_6 VL - 71 SP - 103 EP - 144 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Kayem, Anne Voluntas dei Massah A1 - Wolthusen, Stephen D. A1 - Meinel, Christoph T1 - Power Systems BT - a matter of security and privacy JF - Smart Micro-Grid Systems Security and Privacy N2 - Studies indicate that reliable access to power is an important enabler for economic growth. To this end, modern energy management systems have seen a shift from reliance on time-consuming manual procedures, to highly automated management, with current energy provisioning systems being run as cyber-physical systems. Operating energy grids as a cyber-physical system offers the advantage of increased reliability and dependability, but also raises issues of security and privacy. In this chapter, we provide an overview of the contents of this book showing the interrelation between the topics of the chapters in terms of smart energy provisioning. We begin by discussing the concept of smart-grids in general, proceeding to narrow our focus to smart micro-grids in particular. Lossy networks also provide an interesting framework for enabling the implementation of smart micro-grids in remote/rural areas, where deploying standard smart grids is economically and structurally infeasible. To this end, we consider an architectural design for a smart micro-grid suited to low-processing capable devices. We model malicious behaviour, and propose mitigation measures based properties to distinguish normal from malicious behaviour. KW - Lossy networks KW - Low-processing capable devices KW - Smart micro-grids KW - Security KW - Privacy KW - Energy Y1 - 2018 SN - 978-3-319-91427-5 SN - 978-3-319-91426-8 U6 - https://doi.org/10.1007/978-3-319-91427-5_1 VL - 71 SP - 1 EP - 8 PB - Springer CY - Dordrecht ER -