TY - JOUR A1 - Deino, Alan L. A1 - Sier, Mark Jan A1 - Garello, Dominique A1 - Keller, B. A1 - Kingston, John A1 - Scott, Jennifer J. A1 - Dupont-Nivet, Guillaume A1 - Cohen, Andrew T1 - Chronostratigraphy of the Baringo-Tugen-Barsemoi (HSPDP-BTB13-1A) core-Ar-40/Ar-39 dating, magnetostratigraphy, tephrostratigraphy, sequence stratigraphy and Bayesian age modeling JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - The Baringo-Tugen-Barsemoi 2013 drillcore (BTB13), acquired as part of the Hominin Sites and Paleolakes Drilling Project, recovered 228 m of fluviolacustrine sedimentary rocks and tuffs spanning a similar to 3.29-2.56 Ma interval of the highly fossiliferous and hominin-bearing Chemeron Formation, Tugen Hills, Kenya. Here we present a Bayesian stratigraphic age model for the core employing chronostratigraphic control points derived from Ar-40/Ar-39 dating of tuffs from core and outcrop, Ar-40/Ar-39 age calibration of related outcrop diatomaceous units, and core magnetostratigraphy. The age model reveals three main intervals with distinct sediment accumulation rates: an early rapid phase from 3.2 to 2.9 Ma; a relatively slow phase from 2.9 to 2.7 Ma; and the highest rate of accumulation from 2.7 to 2.6 Ma. The intervals of rapid accumulation correspond to periods of high Earth orbital eccentricity, whereas the slow accumulation interval corresponds to low eccentricity at 2.9-2.7 Ma, suggesting that astronomically mediated climate processes may be responsible for the observed changes in sediment accumulation rate. Lacustrine transgression-regression events, as delineated using sequence stratigraphy, dominantly operate on precession scale, particularly within the high eccentricity periods. A set of erosively based fluvial conglomerates correspond to the 2.9-2.7 Ma interval, which could be related to either the depositional response to low eccentricity or to the development of unconformities due to local tectonic activity. Age calibration of core magnetic susceptibility and gamma density logs indicates a close temporal correspondence between a shift from high- to low-frequency signal variability at similar to 3 Ma, approximately coincident the end of the mid-Piacenzian Warm Period, and the beginning of the cooling of world climate leading to the initiation of Northern Hemispheric glaciation c. 2.7 Ma. BTB13 and the Baringo Basin records may thus provide evidence of a connection between high-latitude glaciation and equatorial terrestrial climate toward the end of the Pliocene. KW - Chemeron Formation KW - Pliocene KW - Eccentricity KW - Precession KW - Paleoclimate KW - Paleolimnology Y1 - 2019 U6 - https://doi.org/10.1016/j.palaeo.2019.109258 SN - 0031-0182 SN - 1872-616X VL - 532 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Stübner, Konstanze A1 - Grujic, Djordje A1 - Dunkl, Istvan A1 - Thiede, Rasmus Christoph A1 - Eugster, Patricia T1 - Pliocene episodic exhumation and the significance of the Munsiari thrust in the northwestern Himalaya JF - Earth & planetary science letters N2 - The Himalayan thrust belt comprises three in-sequence foreland-propagating orogen-scale faults, the Main Central thrust, the Main Boundary thrust, and the Main Frontal thrust. Recently, the Munsiari–Ramgarh–Shumar thrust system has been recognized as an additional, potentially orogen-scale shear zone in the proximal footwall of the Main Central thrust. The timing of the Munsiari, Ramgarh, and Shumar thrusts and their role in Himalayan tectonics are disputed. We present 31 new zircon (U–Th)/He ages from a profile across the central Himachal Himalaya in the Beas River area. Within a ∼40 km wide belt northeast of the Kullu–Larji–Rampur window, ages ranging from to constrain a distinct episode of rapid Pliocene to Present exhumation; north and south of this belt, zircon (U–Th)/He ages are older ( to ). We attribute the Pliocene rapid exhumation episode to basal accretion to the Himalayan thrust belt and duplex formation in the Lesser Himalayan sequence including initiation of the Munsiari thrust. Pecube thermokinematic modelling suggests exhumation rates of ∼2–3 mm/yr from 4–7 to 0 Ma above the duplex contrasting with lower (<0.3 mm/yr) middle-late Miocene exhumation rates. The Munsiari thrust terminates laterally in central Himachal Pradesh. In the NW Indian Himalaya, the Main Central thrust zone comprises the sheared basal sections of the Greater Himalayan sequence and the mylonitic ‘Bajaura nappe’ of Lesser Himalayan affinity. We correlate the Bajaura unit with the Ramgarh thrust sheet in Nepal based on similar lithologies and the middle Miocene age of deformation. The Munsiari thrust in the central Himachal Himalaya is several Myr younger than deformation in the Bajaura and Ramgarh thrust sheets. Our results illustrate the complex and segmented nature of the Munsiari–Ramgarh–Shumar thrust system. KW - Himalaya KW - Himachal Pradesh KW - Munsiari thrust KW - thermochronology KW - thermokinematic modelling KW - Pliocene Y1 - 2017 U6 - https://doi.org/10.1016/j.epsl.2017.10.036 SN - 0012-821X SN - 1385-013X VL - 481 SP - 273 EP - 283 PB - Elsevier CY - Amsterdam ER -