TY - JOUR A1 - Garakani, Tayebeh Mirzaei A1 - Richter, Marina Juliane A1 - Böker, Alexander T1 - Controlling the bio-inspired synthesis of silica JF - Journal of colloid and interface science N2 - The influence of different parameters on the silicification procedure using lysozyme is reported. When polyethoxysiloxane (PEOS), an internally crosslinked silica reservoir, is used, regular structures with a narrow size distribution could be obtained only via introducing the silica precursor in two steps including initial dropping and subsequent addition of residual oil phase in one portion. We found that mixing sequence of mineralizing agents in the presence of a positively charged surfactant plays a key role in terms of silica precipitation when tetraethoxyorthosilicate (TEOS) is the oil phase. In contrast, well mineralized crumpled features with high specific surface area could be synthesized in the presence of PEOS as a silica precursor polymer, regardless of mixing sequence. Moreover, introducing sodium dodecyl sulfate (SDS) as a negatively charged surfactant resulted in regular silica sphere formation only in combination with hexylene glycol (MPD) as a specific co-solvent. Finally, it is demonstrated that by inclusion of different nanoparticles even more sophisticated hybrid materials can be generated. KW - Silicification KW - Lysozyme KW - Polyetlioxysiloxane KW - High specific surface area KW - Surfactant KW - Nanoparticles KW - Hybrid materials Y1 - 2016 U6 - https://doi.org/10.1016/j.jcis.2016.10.069 SN - 0021-9797 SN - 1095-7103 VL - 488 SP - 322 EP - 334 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Göbel, Ronald A1 - Stoltenberg, Marcus A1 - Krehl, Stefan A1 - Biolley, Christine A1 - Rothe, Regina A1 - Schmidt, Bernd A1 - Hesemann, Peter A1 - Taubert, Andreas T1 - A Modular Approach towards Mesoporous Silica Monoliths with Organically Modified Pore Walls: Nucleophilic Addition, Olefin Metathesis, and Cycloaddition JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - We have synthesized mesoporous silica (monoliths) with defined surface chemistry by means of a number of addition reactions: (i) coupling of an isocyanate to a surface-immobilized thiol, (ii) addition of an epoxide to a surface-immobilized thiol, (iii) cross-metathesis between two olefins, and (iv) Huisgen [2+3] cycloaddition of an alkyne-functionalized silica monolith with an azide. Functionalization of the mesopores was observed, but there are significant differences between individual approaches. Isocyanate and epoxide additions lead to high degrees of functionalization, whereas olefin metathesis and [2+3] cycloaddition are less effective. We further show that the efficiency of the modification is about twice as high in mesoporous silica particles than in macroscopic silica monoliths. KW - Mesoporous materials KW - Hybrid materials KW - Surface chemistry KW - Click chemistry KW - Nucleophilic addition Y1 - 2016 U6 - https://doi.org/10.1002/ejic.201500638 SN - 1434-1948 SN - 1099-0682 VL - 6 SP - 2088 EP - 2099 PB - Wiley-VCH CY - Weinheim ER -