TY - JOUR A1 - Bosserdt, Maria A1 - Gajovic-Eichelman, Nenad A1 - Scheller, Frieder W. T1 - Modulation of direct electron transfer of cytochrome c by use of a molecularly imprinted thin film JF - Analytical & bioanalytical chemistry N2 - We describe the preparation of a molecularly imprinted polymer film (MIP) on top of a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold, where the template cytochrome c (cyt c) participates in direct electron transfer (DET) with the underlying electrode. To enable DET, a non-conductive polymer film is electrodeposited from an aqueous solution of scopoletin and cyt c on to the surface of a gold electrode previously modified with MUA. The electroactive surface concentration of cyt c was 0.5 pmol cm(-2). In the absence of the MUA layer, no cyt c DET was observed and the pseudo-peroxidatic activity of the scopoletin-entrapped protein, assessed via oxidation of Ampliflu red in the presence of hydrogen peroxide, was only 30 % of that for the MIP on MUA. This result indicates that electrostatic adsorption of cyt c by the MUA-SAM substantially increases the surface concentration of cyt c during the electrodeposition step, and is a prerequisite for the productive orientation required for DET. After template removal by treatment with sulfuric acid, rebinding of cyt c to the MUA-MIP-modified electrode occurred with an affinity constant of 100,000 mol(-1) L, a value three times higher than that determined by use of fluorescence titration for the interaction between scopoletin and cyt c in solution. The DET of cyt c in the presence of myoglobin, lysozyme, and bovine serum albumin (BSA) reveals that the MIP layer suppresses the effect of competing proteins. KW - Cytochrome c KW - Molecularly imprinted polymer film KW - Mercaptoundecanoic acid KW - Direct electron transfer KW - Scopoletin (7-hydroxy-6-methoxycoumarin) Y1 - 2013 U6 - https://doi.org/10.1007/s00216-013-7009-8 SN - 1618-2642 VL - 405 IS - 20 SP - 6437 EP - 6444 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Frasca, Stefano A1 - Richter, Claudia A1 - von Graberg, Till A1 - Smarsly, Bernd M. A1 - Wollenberger, Ursula T1 - Electrochemical switchable protein-based optical device JF - Engineering in life sciences : Industry, Environment, Plant, Food N2 - The present work contributes to the development of reusable sensing systems with a visual evaluation of the detection process related to an analyte. An electrochemical switchable protein-based optical device was designed with the core part composed of cytochrome c immobilized in a mesoporous indium tin oxide film. A color-developing redox-sensitive dye was used as switchable component of the system. The cytochrome c-catalyzed oxidation of the dye by hydrogen peroxide is spectroscopically investigated. When the dye is co-immobilized with the protein, its redox state is easily controlled by application of an electrical potential at the supporting material. This enables to electrochemically reset the system to the initial state and repetitive signal generation. The implemented reset function of the color forming reaction will make calibration of small test devices possible. The principle can be extended to other color forming redox reactions and to coupled enzyme systems, such as rapid food testing and indication of critical concentrations of metabolites for health care. KW - Cytochrome c KW - Electrochemical switch KW - Indium tin oxide KW - mesoporous materials KW - Optical device Y1 - 2011 U6 - https://doi.org/10.1002/elsc.201100079 SN - 1618-0240 VL - 11 IS - 6 SP - 554 EP - 558 PB - Wiley-Blackwell CY - Malden ER -