TY - JOUR A1 - Streck, Charlotte T1 - How voluntary carbon markets can drive climate ambition JF - Journal of energy & natural resources law : the journal of the Section on Energy and Natural Resources Law of the International Bar Association N2 - Over the last three years, corporate interest in voluntary carbon markets has almost tripled, and this trend has seemed to resist the COVID-19 economic fallout. If managed well, this market has the potential to become a very significant driver of mitigation action, in particular in developing countries, which supply the majority of voluntary carbon offsets. Robust standards and rules can overcome concerns that voluntary carbon markets could lead to company greenwashing and undermine the goals of the Paris Agreement. On the contrary, voluntary corporate investments can encourage more ambitious government climate action, and encourage governments to make more ambitious pledges under the Paris Agreement. Multisectoral mitigation partnerships can ensure the complementarity of public and private action and support policy alignment and investments in priority sectors and regions. KW - Climate Policy KW - Paris Agreement KW - Corporate Climate Action KW - Carbon KW - Markets KW - public-private partnerships Y1 - 2021 U6 - https://doi.org/10.1080/02646811.2021.1881275 SN - 0264-6811 SN - 2376-4538 VL - 39 IS - 3 SP - 367 EP - 374 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Schmidt, Martin A1 - Lischeid, Gunnar A1 - Nendel, Claas T1 - Microclimate and matter dynamics in transition zones of forest to arable land JF - Agricultural and forest meteorology N2 - Human-driven fragmentation of landscapes leads to the formation of transition zones between ecosystems that are characterised by fluxes of matter, energy and information. These transition zones may offer rather inhospitable habitats that could jeopardise biodiversity. On the other hand, transition zones are also reported to be hotspots for biodiversity and even evolutionary processes. The general mechanisms and influence of processes in transition zones are poorly understood. Although heterogeneity and diversity of land use of fragments and the transition zones between them play an important role, most studies only refer to forested transition zones. Often, only an extrapolation of measurements in the different fragments themselves is reported to determine gradients in transition zones. This paper contributes to a quantitative understanding of agricultural landscapes beyond individual ecotopes, and towards connected ecosystem mosaics that may be beneficial for the provision of ecosystem services. KW - Edge effects KW - Environmental gradients KW - Fragmentation KW - Ecosystem services KW - Carbon KW - Nitrogen Y1 - 2019 U6 - https://doi.org/10.1016/j.agrformet.2019.01.001 SN - 0168-1923 SN - 1873-2240 VL - 268 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schälicke, Svenja A1 - Teubner, Johannes A1 - Martin-Creuzburg, Dominik A1 - Wacker, Alexander T1 - Fitness response variation within and among consumer species can be co-mediated by food quantity and biochemical quality JF - Scientific Reports N2 - In natural heterogeneous environments, the fitness of animals is strongly influenced by the availability and composition of food. Food quantity and biochemical quality constraints may affect individual traits of consumers differently, mediating fitness response variation within and among species. Using a multifactorial experimental approach, we assessed population growth rate, fecundity, and survival of six strains of the two closely related freshwater rotifer species Brachionus calyciflorus sensu stricto and Brachionus fernandoi. Therefore, rotifers fed low and high concentrations of three algal species differing in their biochemical food quality. Additionally, we explored the potential of a single limiting biochemical nutrient to mediate variations in population growth response. Therefore, rotifers fed a sterol-free alga, which we supplemented with cholesterol-containing liposomes. Co-limitation by food quantity and biochemical food quality resulted in differences in population growth rates among strains, but not between species, although effects on fecundity and survival differed between species. The effect of cholesterol supplementation on population growth was strain-specific but not species-specific. We show that fitness response variations within and among species can be mediated by biochemical food quality. Dietary constraints thus may act as evolutionary drivers on physiological traits of consumers, which may have strong implications for various ecological interactions. KW - Polyunsaturated Fatty-Acids KW - Life-History Consequences KW - 2 Different Strains KW - Population-Growth KW - Resource Competition KW - Body-Size KW - Egg Size KW - Rotifier KW - Limitation KW - Carbon Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-52538-2 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited CY - London ER - TY - JOUR A1 - Heslop, J. K. A1 - Anthony, K. M. Walter A1 - Grosse, Guido A1 - Liebner, Susanne A1 - Winkel, Matthias T1 - Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Permafrost thaw subjects previously frozen soil organic carbon (SOC) to microbial degradation to the greenhouse gases carbon dioxide (CO2) and methane (CH4). Emission of these gases constitutes a positive feedback to climate warming. Among numerous uncertainties in estimating the strength of this permafrost carbon feedback (PCF), two are: (i) how mineralization of permafrost SOC thawed in saturated anaerobic conditions responds to changes in temperature and (ii) how microbial communities and temperature sensitivities change over time since thaw. To address these uncertainties, we utilized a thermokarst-lake sediment core as a natural chronosequence where SOC thawed and incubated in situ under saturated anaerobic conditions for up to 400 years following permafrost thaw. Initial microbial communities were characterized, and sediments were anaerobically incubated in the lab at four temperatures (0 °C, 3 °C, 10 °C, and 25 °C) bracketing those observed in the lake's talik. Net CH4 production in freshly-thawed sediments near the downward-expanding thaw boundary at the base of the talik were most sensitive to warming at the lower incubation temperatures (0 °C to 3 °C), while the overlying sediments which had been thawed for centuries had initial low abundant methanogenic communities (< 0.02%) and did not experience statistically significant increases in net CH4 production potentials until higher incubation temperatures (10 °C to 25 °C). We propose these observed differences in temperature sensitivities are due to differences in SOM quality and functional microbial community composition that evolve over time; however further research is necessary to better constrain the roles of these factors in determining temperature controls on anaerobic C mineralization. KW - Carbon KW - Lake sediments KW - Methane KW - Permafrost KW - Talik KW - Temperature sensitivity Y1 - 2019 U6 - https://doi.org/10.1016/j.scitotenv.2019.06.402 SN - 0048-9697 SN - 1879-1026 VL - 691 SP - 124 EP - 134 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Reverey, Florian A1 - Ganzert, Lars A1 - Lischeid, Gunnar A1 - Ulrich, Andreas A1 - Premke, Katrin A1 - Grossart, Hans-Peter T1 - Dry-wet cycles of kettle hole sediments leave a microbial and biogeochemical legacy JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Understanding interrelations between an environment's hydrological past and its current biogeochemistry is necessary for the assessment of biogeochemical and microbial responses to changing hydrological conditions. The question how previous dry-wet events determine the contemporary microbial and biogeochemical state is addressed in this study. Therefore, sediments exposed to the atmosphere of areas with a different hydrological past within one kettle hole, i.e. (1) the predominantly inundated pond center, (2) the pond margin frequently desiccated for longer periods and (3) an intermediate zone, were incubated with the same rewetting treatment. Physicochemical and textural characteristics were related to structural microbial parameters regarding carbon and nitrogen turnover, i.e. abundance of bacteria and fungi, denitrifiers (targeted by the nirK und nirS functional genes) and nitrate ammonifiers (targeted by the nrfA functional gene). Our study reveals that, in combination with varying sediment texture, the hydrological history creates distinct microbial habitats with defined boundary conditions within the kettle hole, mainly driven by redox conditions, pH and organic matter (OM) composition. OM mineralization, as indicated by CO2-outgassing, was most efficient in exposed sediments with a less stable hydrological past. The potential for nitrogen retention via nitrate ammonification was highest in the hydrologically rather stable pond center, counteracting nitrogen loss due to denitrification. Therefore, the degree of hydrological stability is an important factor leaving a microbial and biogeochemical legacy, which determines carbon and nitrogen losses from small lentic freshwater systems in the long term run. KW - Desiccation KW - DNRA KW - Denitrifiers KW - Organic matter mineralization KW - Carbon KW - Nitrogen Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2018.01.220 SN - 0048-9697 SN - 1879-1026 VL - 627 SP - 985 EP - 996 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - López-Tarazón, José Andrés A1 - Lopez, Pilar A1 - Lobera, Gemma A1 - Batalla Villanueva, Ramon J. T1 - Suspended sediment, carbon and nitrogen transport in a regulated Pyrenean river JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Regulation alters the characteristics of riversty transforming parts of them into lakes, affecting their hydrology and also the physical, chemical, and biological characteristics and dynamics. Reservoirs have proven to be very effective retaining particulate materials, thereby avoiding the downstream transport of suspended sediment and the chemical substances associated with it (e.g. Carbon, C or Nitrogen, N). The study of fluvial transport of C and N is of great interest since river load represents a major link to the global C and N cycles. Moreover, reservoirs are the most important sinks for organic carbon among inland waters and have a potential significance as nitrogen sinks. In this respect, this paper investigates the effects of a Pyrenean reservoir on the runoff, suspended sediment, C and N derived from the highly active Esera and Isabena rivets. Key findings indicate that the reservoir causes a considerable impact on the Esera-Isabena river fluxes, reducing them dramatically as almost all the inputs are retained within the reservoir. Despite the very dry study year (2011-2012), it can be calculated that almost 300,000 t of suspended sediment were deposited into the Barasona Reservoir, from which more than 16,000 were C (i.e. 2200 t as organic C) and 222 t were N. These values may not be seen as remarkable in a wider global context but, assuming that around 30 hm(3) of sediment are currently stored in the reservoir, figures would increase up to ca. 2.6 x 10(6) t of C (i.e. 360,000 t of organic C) and 35,000 t of N. Nevertheless, these values are indicative and should be treated with caution as there is incomplete understanding of all the processes which affect C and N. Further investigation to establish a more complete picture of C and N yields and budgets by monitoring the different processes involved is essential. (C) 2015 Elsevier B.V. All rights reserved. KW - Suspended sediment KW - Carbon KW - Nitrogen KW - Temporal dynamics KW - Barasona Reservoir KW - River Esera KW - Ebro basin Y1 - 2016 U6 - https://doi.org/10.1016/j.scitotenv.2015.06.132 SN - 0048-9697 SN - 1879-1026 VL - 540 SP - 133 EP - 143 PB - Elsevier CY - Amsterdam ER -