TY - JOUR A1 - Brzezinka, Krzysztof A1 - Altmann, Simone A1 - Czesnick, Hjördis A1 - Nicolas, Philippe A1 - Gorka, Michal A1 - Benke, Eileen A1 - Kabelitz, Tina A1 - Jähne, Felix A1 - Graf, Alexander A1 - Kappel, Christian A1 - Bäurle, Isabel T1 - Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling JF - eLife N2 - Plants as sessile organisms can adapt to environmental stress to mitigate its adverse effects. As part of such adaptation they maintain an active memory of heat stress for several days that promotes a more efficient response to recurring stress. We show that this heat stress memory requires the activity of the FORGETTER1 (FGT1) locus, with fgt1 mutants displaying reduced maintenance of heat-induced gene expression. FGT1 encodes the Arabidopsis thaliana orthologue of Strawberry notch (Sno), and the protein globally associates with the promoter regions of actively expressed genes in a heat-dependent fashion. FGT1 interacts with chromatin remodelers of the SWI/ SNF and ISWI families, which also display reduced heat stress memory. Genomic targets of the BRM remodeler overlap significantly with FGT1 targets. Accordingly, nucleosome dynamics at loci with altered maintenance of heat-induced expression are affected in fgt1. Together, our results suggest that by modulating nucleosome occupancy, FGT1 mediates stress-induced chromatin memory. Y1 - 2016 U6 - https://doi.org/10.7554/eLife.17061 SN - 2050-084X VL - 5 PB - eLife Sciences Publications CY - Cambridge ER - TY - JOUR A1 - Nicolas, Philippe A1 - Lecourieux, David A1 - Kappel, Christian A1 - Cluzet, Stephanie A1 - Cramer, Grant A1 - Delrot, Serge A1 - Lecourieux, Fatma T1 - The basic leucine zipper transcription factor abscisic acid responseelement-binding factor 2 is an important transcriptional regulator ofabscisic acid-dependent grape berry ripening processes JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. Y1 - 2014 U6 - https://doi.org/10.1104/pp.113.231977 SN - 0032-0889 SN - 1532-2548 VL - 164 IS - 1 SP - 365 EP - 383 PB - American Society of Plant Physiologists CY - Rockville ER -