TY - JOUR A1 - Al-Sa'di, Mahmoud A1 - Jaiser, Frank A1 - Bagnich, Sergey A. A1 - Unger, Thomas A1 - Blakesley, James C. A1 - Wilke, Andreas A1 - Neher, Dieter T1 - Electrical and optical simulations of a polymer-based phosphorescent organic light-emitting diode with high efficiency JF - Journal of polymer science : B, Polymer physics N2 - A comprehensive numerical device simulation of the electrical and optical characteristics accompanied with experimental measurements of a new highly efficient system for polymer-based light-emitting diodes doped with phosphorescent dyes is presented. The system under investigation comprises an electron transporter attached to a polymer backbone blended with an electronically inert small molecule and an iridium-based green phosphorescent dye which serves as both emitter and hole transporter. The device simulation combines an electrical and an optical model. Based on the known highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of all components as well as the measured electrical and optical characteristics of the devices, we model the emissive layer as an effective medium using the dye's HOMO as hole transport level and the polymer LUMO as electron transport level. By fine-tuning the injection barriers at the electron and hole-injecting contact, respectively, in simulated devices, unipolar device characteristics were fitted to the experimental data. Simulations using the so-obtained set of parameters yielded very good agreement to the measured currentvoltage, luminancevoltage characteristics, and the emission profile of entire bipolar light-emitting diodes, without additional fitting parameters. The simulation was used to gain insight into the physical processes and the mechanisms governing the efficiency of the organic light-emitting diode, including the position and extent of the recombination zone, carrier concentration profiles, and field distribution inside the device. The simulations show that the device is severely limited by hole injection, and that a reduction of the hole-injection barrier would improve the device efficiency by almost 50%. KW - conjugated polymers KW - high performance polymers KW - organic electronics KW - organic light-emitting diode KW - simulations KW - TCAD Y1 - 2012 U6 - https://doi.org/10.1002/polb.23158 SN - 0887-6266 VL - 50 IS - 22 SP - 1567 EP - 1576 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Albrecht, Steve A1 - Grootoonk, Bjorn A1 - Neubert, Sebastian A1 - Roland, Steffen A1 - Wordenweber, Jan A1 - Meier, Matthias A1 - Schlatmann, Rutger A1 - Gordijn, Aad A1 - Neher, Dieter T1 - Efficient hybrid inorganic/organic tandem solar cells with tailored recombination contacts JF - Solar energy materials & solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion N2 - In this work, the authors present a 7.5% efficient hybrid tandem solar cell with the bottom cell made of amorphous silicon and a Si-PCPDTBT:PC70BM bulk heterojunction top cell. Loss-free recombination contacts were realized by combing Al-doped ZnO with either the conducting polymer composite PEDOT:PSS or with a bilayer of ultrathin Al and MoO3. Optimization of these contacts results in tandem cells with high fill factors of 70% and an open circuit voltage close to the sum of those of the sub-cells. This is the best efficiency reported for this type of hybrid tandem cell so far. Optical and electrical device modeling suggests that the efficiency can be increased to similar to 12% on combining a donor polymer with suitable absorption onset with PCBM. We also describe proof-of-principle studies employing light trapping in hybrid tandem solar cells, suggesting that this device architecture has the potential to achieve efficiencies well above 12%. (C) 2014 Elsevier B.V. All rights reserved. KW - Hybrid solar cells KW - Tandem solar cells KW - Organic solar cells KW - Bulk heterojunction KW - Efficiency optimization Y1 - 2014 U6 - https://doi.org/10.1016/j.solmat.2014.04.020 SN - 0927-0248 SN - 1879-3398 VL - 127 SP - 157 EP - 162 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Albrecht, Steve A1 - Janietz, Silvia A1 - Schindler, Wolfram A1 - Frisch, Johannes A1 - Kurpiers, Jona A1 - Kniepert, Juliane A1 - Inal, Sahika A1 - Pingel, Patrick A1 - Fostiropoulos, Konstantinos A1 - Koch, Norbert A1 - Neher, Dieter T1 - Fluorinated Copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells JF - Journal of the American Chemical Society N2 - A novel fluorinated copolymer (F-PCPDTBT) is introduced and shown to exhibit significantly higher power conversion efficiency in bulk heterojunction solar cells with PC70BM compared to the well-known low-band-gap polymer PCPDTBT. Fluorination lowers the polymer HOMO level, resulting in high open-circuit voltages well exceeding 0.7 V. Optical spectroscopy and morphological studies with energy-resolved transmission electron microscopy reveal that the fluorinated polymer aggregates more strongly in pristine and blended layers, with a smaller amount of additives needed to achieve optimum device performance. Time-delayed collection field and charge extraction by linearly increasing voltage are used to gain insight into the effect of fluorination on the field dependence of free charge-carrier generation and recombination. F-PCPDTBT is shown to exhibit a significantly weaker field dependence of free charge-carrier generation combined with an overall larger amount of free charges, meaning that geminate recombination is greatly reduced. Additionally, a 3-fold reduction in non-geminate recombination is measured compared to optimized PCPDTBT blends. As a consequence of reduced non-geminate recombination, the performance of optimized blends of fluorinated PCPDTBT with PC70BM is largely determined by the field dependence of free-carrier generation, and this field dependence is considerably weaker compared to that of blends comprising the non-fluorinated polymer. For these optimized blends, a short-circuit current of 14 mA/cm(2), an open-circuit voltage of 0.74 V, and a fill factor of 58% are achieved, giving a highest energy conversion efficiency of 6.16%. The superior device performance and the low band-gap render this new polymer highly promising for the construction of efficient polymer-based tandem solar cells. Y1 - 2012 U6 - https://doi.org/10.1021/ja305039j SN - 0002-7863 VL - 134 IS - 36 SP - 14932 EP - 14944 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Albrecht, Steve A1 - Schaefer, Sebastian A1 - Lange, Ilja A1 - Yilmaz, Seyfullah A1 - Dumsch, Ines A1 - Allard, Sybille A1 - Scherf, Ullrich A1 - Hertwig, Andreas A1 - Neher, Dieter T1 - Light management in PCPDTBT:PC70BM solar cells: A comparison of standard and inverted device structures JF - Organic electronics : physics, materials and applications N2 - We compare standard and inverted bulk heterojunction solar cells composed of PCPDTBT:PC70BM blends. Inverted devices comprising 100 nm thick active layers exhibited short circuit currents of 15 mA/cm(2), 10% larger than in corresponding standard devices. Modeling of the optical field distribution in the different device stacks proved that this enhancement originates from an increased absorption of incident light in the active layer. Internal quantum efficiencies (IQEs) were obtained from the direct comparison of experimentally derived and modeled currents for different layer thicknesses, yielding IQEs of similar to 70% for a layer thickness of 100 nm. Simulations predict a significant increase of the light harvesting efficiency upon increasing the layer thickness to 270 nm. However, a continuous deterioration of the photovoltaic properties with layer thickness was measured for both device architectures, attributed to incomplete charge extraction. On the other hand, our optical modeling suggests that inverted devices based on PCPDTBT should be able to deliver high power conversion efficiencies (PCEs) of more than 7% provided that recombination losses can be reduced. KW - Organic solar cells KW - Inverted solar cells KW - PCPDTBT KW - Low band-gap KW - Optical modeling Y1 - 2012 U6 - https://doi.org/10.1016/j.orgel.2011.12.019 SN - 1566-1199 VL - 13 IS - 4 SP - 615 EP - 622 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Albrecht, Steve A1 - Schindler, Wolfram A1 - Kurpiers, Jona A1 - Kniepert, Juliane A1 - Blakesley, James C. A1 - Dumsch, Ines A1 - Allard, Sybille A1 - Fostiropoulos, Konstantinos A1 - Scherf, Ullrich A1 - Neher, Dieter T1 - On the field dependence of free charge carrier generation and recombination in blends of PCPDTBT/PC70BM influence of solvent additives JF - The journal of physical chemistry letters N2 - We have applied time-delayed collection field (TDCF) and charge extraction by linearly increasing voltage (CELIV) to investigate the photogeneration, transport, and recombination of charge carriers in blends composed of PCPDTBT/PC70BM processed with and without the solvent additive diiodooctane. The results suggest that the solvent additive has severe impacts on the elementary processes involved in the photon to collected electron conversion in these blends. First, a pronounced field dependence of the free carrier generation is found for both blends, where the field dependence is stronger without the additive. Second, the fate of charge carriers in both blends can be described with a rather high bimolecular recombination coefficients, which increase with decreasing internal field. Third, the mobility is three to four times higher with the additive. Both blends show a negative field dependence of mobility, which we suggest to cause bias-dependent recombination coefficients. Y1 - 2012 U6 - https://doi.org/10.1021/jz3000849 SN - 1948-7185 VL - 3 IS - 5 SP - 640 EP - 645 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Albrecht, Steve A1 - Tumbleston, John R. A1 - Janietz, Silvia A1 - Dumsch, Ines A1 - Allard, Sybille A1 - Scherf, Ullrich A1 - Ade, Harald W. A1 - Neher, Dieter T1 - Quantifying charge extraction in organic solar cells: The case of fluorinated PCPDTBT JF - The journal of physical chemistry letters N2 - We introduce a new and simple method to quantify the effective extraction mobility in organic solar cells at low electric fields and charge carrier densities comparable to operation conditions under one sun illumination. By comparing steady-state carrier densities at constant illumination intensity and under open-circuit conditions, the gradient of the quasi-Fermi potential driving the current is estimated as a function of external bias and charge density. These properties are then related to the respective steady-state current to determine the effective extraction mobility. The new technique is applied to different derivatives of the well-known low-band-gap polymer PCPDTBT blended with PC70BM. We show that the slower average extraction due to lower mobility accounts for the moderate fill factor when solar cells are fabricated with mono- or difluorinated PCPDTBT. This lower extraction competes with improved generation and reduced nongeminate recombination, rendering the monofluorinated derivative the most efficient donor polymer. Y1 - 2014 U6 - https://doi.org/10.1021/jz500457b SN - 1948-7185 VL - 5 IS - 7 SP - 1131 EP - 1138 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Albrecht, Steve A1 - Vandewal, Koen A1 - Tumbleston, John R. A1 - Fischer, Florian S. U. A1 - Douglas, Jessica D. A1 - Frechet, Jean M. J. A1 - Ludwigs, Sabine A1 - Ade, Harald W. A1 - Salleo, Alberto A1 - Neher, Dieter T1 - On the efficiency of charge transfer state splitting in polymer: Fullerene solar cells JF - Advanced materials KW - organic solar cells KW - charge generation KW - geminate recombination KW - charge transfer states KW - driving force KW - excess energy KW - morphology KW - spectroelectrochemistry Y1 - 2014 U6 - https://doi.org/10.1002/adma.201305283 SN - 0935-9648 SN - 1521-4095 VL - 26 IS - 16 SP - 2533 EP - 2539 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Alqahtani, Obaid A1 - Babics, Maxime A1 - Gorenflot, Julien A1 - Savikhin, Victoria A1 - Ferron, Thomas A1 - Balawi, Ahmed H. A1 - Paulke, Andreas A1 - Kan, Zhipeng A1 - Pope, Michael A1 - Clulow, Andrew J. A1 - Wolf, Jannic A1 - Burn, Paul L. A1 - Gentle, Ian R. A1 - Neher, Dieter A1 - Toney, Michael F. A1 - Laquai, Frederic A1 - Beaujuge, Pierre M. A1 - Collins, Brian A. T1 - Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors JF - Advanced energy materials N2 - The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh2)(2), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes. KW - charge transport KW - domain purity KW - microscopy KW - mixed domains KW - organic solar cells KW - photovoltaic devices KW - resonant X-ray scattering KW - small molecules KW - transient spectroscopy Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201702941 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 19 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Anton, Arthur Markus A1 - Steyrleuthner, Robert A1 - Kossack, Wilhelm A1 - Neher, Dieter A1 - Kremer, Friedrich T1 - Infrared Transition Moment Orientational Analysis on the Structural Organization of the Distinct Molecular Subunits in Thin Layers of a High Mobility n-Type Copolymer JF - Journal of the American Chemical Society N2 - The IR-based method of infrared transition moment orientational analysis (IR-TMOA) is employed to unravel molecular order in thin layers of the semiconducting polymer poly[N,N'-bis(2-octyldodecyl),-1,4,5,8-naphthalene-diimide-2,6-diyl]-alt-5-5'-(2,2'-bithiophene) (P(NDI2OD-T2)). Structure-specific vibrational bands are analyzed in dependence On polarization and inclination of the sample-With respect to the optical axis. By that the molecular Order parameter tensor for the respective molecular moieties with regard to the sample: coordinate system is deduced. Making use of the specificity of the IR spectral range, we are able to determine separately the orientation of atomistic planes defined through the naphthalenediimide (NDI) and bithiophene (T2) units relative to the substrate, and hence, relative to each other. A pronounced solvent effect is observed While chlorobenzene causes the T2 planes to align preferentially parallel to the substrate at an angle of 29 degrees, using a 1:1 chloronaphthalene:xylene mixture results in a reorientation of the T2 units from a face on into an edge on arrangement. In contrast the NDI unit remains unaffected. Additionally, for both solvents evidence is observed for the aggregation of chains in accord With recently published results obtained by UV-vis absorption spectroscopy. Y1 - 2015 U6 - https://doi.org/10.1021/jacs.5b01755 SN - 0002-7863 VL - 137 IS - 18 SP - 6034 EP - 6043 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Asawapirom, Udom A1 - Bulut, F. A1 - Farrell, Tony A1 - Gadermaier, C. A1 - Gamerith, S. A1 - Güntner, Roland A1 - Kietzke, Thomas A1 - Patil, S. A1 - Piok, T. A1 - Montenegro, Rivelino V. D. A1 - Stiller, Burkhard A1 - Tiersch, Brigitte A1 - Landfester, Katharina A1 - List, E. J. W. A1 - Neher, Dieter A1 - Torres, C. S. A1 - Scherf, Ullrich T1 - Materials for polymer electronics applications semiconducting polymer thin films and nanoparticles N2 - The paper presents two different approaches to nanostructured semiconducting polymer materials: (i) the generation of aqueous semiconducting polymer dispersions (semiconducting polymer nanospheres SPNs) and their processing into dense films and layers, and (ii) the synthesis of novel semiconducting polyfluorene-block-polyaniline (PF-b-PANI) block copolymers composed of conjugated blocks of different redox potentials which form nanosized morphologies in the solid state Y1 - 2004 SN - 1022-1360 ER -