TY - JOUR A1 - Berrah, N. A1 - Sánchez-González, Álvaro A1 - Jurek, Zoltan A1 - Obaid, Razib A1 - Xiong, H. A1 - Squibb, R. J. A1 - Osipov, T. A1 - Lutman, A. A1 - Fang, L. A1 - Barillot, T. A1 - Bozek, J. D. A1 - Cryan, J. A1 - Wolf, T. J. A. A1 - Rolles, Daniel A1 - Coffee, R. A1 - Schnorr, Kirsten A1 - Augustin, S. A1 - Fukuzawa, Hironobu A1 - Motomura, K. A1 - Niebuhr, Nina Isabelle A1 - Frasinski, L. J. A1 - Feifel, Raimund A1 - Schulz, Claus-Peter A1 - Toyota, Kenji A1 - Son, Sang-Kil A1 - Ueda, K. A1 - Pfeifer, T. A1 - Marangos, J. P. A1 - Santra, Robin T1 - Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization JF - Nature physics N2 - X-ray free-electron lasers have, over the past decade, opened up the possibility of understanding the ultrafast response of matter to intense X-ray pulses. In earlier research on atoms and small molecules, new aspects of this response were uncovered, such as rapid sequences of inner-shell photoionization and Auger ionization. Here, we studied a larger molecule, buckminsterfullerene (C-60), exposed to 640 eV X-rays, and examined the role of chemical effects, such as chemical bonds and charge transfer, on the fragmentation following multiple ionization of the molecule. To provide time resolution, we performed femtosecond-resolved X-ray pump/X-ray probe measurements, which were accompanied by advanced simulations. The simulations and experiment reveal that despite substantial ionization induced by the ultrashort (20 fs) X-ray pump pulse, the fragmentation of C-60 is considerably delayed. This work uncovers the persistence of the molecular structure of C-60, which hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, we demonstrate that a substantial fraction of the ejected fragments are neutral carbon atoms. These findings provide insights into X-ray free-electron laser-induced radiation damage in large molecules, including biomolecules. Y1 - 2019 U6 - https://doi.org/10.1038/s41567-019-0665-7 SN - 1745-2473 SN - 1745-2481 VL - 15 IS - 12 SP - 1279 EP - 1301 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Yin, Zhong A1 - Rajkovic, Ivan A1 - Veedu, Sreevidya Thekku A1 - Deinert, Sascha A1 - Raiser, Dirk A1 - Jain, Rohit A1 - Fukuzawa, Hironobu A1 - Wada, Shin-ichi A1 - Quevedo, Wilson A1 - Kennedy, Brian A1 - Schreck, Simon A1 - Pietzsch, Annette A1 - Wernet, Philippe A1 - Ueda, Kyoshi A1 - Föhlisch, Alexander A1 - Techert, Simone T1 - Ionic solutions probed by resonant inelastic X-ray scattering JF - Zeitschrift für physikalische Chemie : international journal of research in physical chemistry and chemical physics N2 - X-ray spectroscopy is a powerful tool to study the local charge distribution of chemical systems. Together with the liquid jet it becomes possible to probe chemical systems in their natural environment, the liquid phase. In this work, we present X-ray absorption (XA), X-ray emission (XE) and resonant inelastic X-ray scattering (RIXS) data of pure water and various salt solutions and show the possibilities these methods offer to elucidate the nature of ion-water interaction. KW - X-ray Spectroscopy KW - XAS KW - XES KW - RIXS KW - Anions KW - Cations KW - Liquid Jet KW - Synchrotron Radiation Y1 - 2015 U6 - https://doi.org/10.1515/zpch-2015-0610 SN - 0942-9352 VL - 229 IS - 10-12 SP - 1855 EP - 1867 PB - De Gruyter CY - Berlin ER -