TY - JOUR A1 - Sedaghatmehr, Mastoureh A1 - Thirumalaikumar, Venkatesh P. A1 - Kamranfar, Iman A1 - Schulz, Karina A1 - Müller-Röber, Bernd A1 - Sampathkumar, Arun A1 - Balazadeh, Salma T1 - Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery JF - The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology N2 - Moderate and temporary heat stresses prime plants to tolerate, and survive, a subsequent severe heat stress. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and can create a heat stress memory. We recently demonstrated that plastid-localized small heat shock protein 21 ( HSP21) is a key component of heat stress memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the heat stress recovery phase extends heat stress memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during heat stress recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with heat stress memory. ATI1 bodies co-localize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during heat stress recovery. Together, our results provide new insights into the module for control of the regulation of heat stress memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the heat stress effect at the cost of reducing the heat stress memory. KW - Arabidopsis thaliana KW - ATI1 KW - FtsH6 KW - heat stress KW - HSP21 KW - plastid KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2021 U6 - https://doi.org/10.1093/jxb/erab304 SN - 0022-0957 SN - 1460-2431 VL - 72 IS - 21 SP - 7498 EP - 7513 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Thirumalaikumar, Venkatesh P. A1 - Gorka, Michal A1 - Schulz, Karina A1 - Masclaux-Daubresse, Celine A1 - Sampathkumar, Arun A1 - Skirycz, Aleksandra A1 - Vierstra, Richard D. A1 - Balazadeh, Salma T1 - Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1 JF - Autophagy N2 - In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS. KW - Arabidopsis thaliana KW - heat stress KW - HSFA2 KW - HSP90.1 KW - NBR1 KW - ROF1 KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2020 U6 - https://doi.org/10.1080/15548627.2020.1820778 SN - 1554-8635 SN - 1554-8627 VL - 17 IS - 9 SP - 2184 EP - 2199 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Leiendecker, Mai-Thi A1 - Licht, Christopher J. A1 - Borghs, Jannik A1 - Mooney, David J. A1 - Zimmermann, Marc A1 - Böker, Alexander T1 - Physical polyurethane hydrogels via charge shielding through acids or salts JF - Macromolecular rapid communications N2 - Physical hydrogels with tunable stress-relaxation and excellent stress recovery are formed from anionic polyurethanes via addition of acids, monovalent salts, or divalent salts. Gel properties can be widely adjusted through pH, salt valence, salt concentration, and monomer composition. We propose and investigate a novel gelation mechanism based on a colloidal system interacting through charge repulsion and chrage shielding, allowing a broad use of the material, from acidic (pH 4–5.5) to pH-neutral hydrogels with Young's moduli ranging from 10 to 140 kPa. KW - acidic crosslinking KW - charge repulsion KW - charge shielding KW - ionic crosslinking KW - physical hydrogels KW - polyurethanes KW - stress recovery KW - stress-relaxation Y1 - 2018 U6 - https://doi.org/10.1002/marc.201700711 SN - 1022-1336 SN - 1521-3927 VL - 39 IS - 7 PB - Wiley-VCH CY - Weinheim ER -