TY - JOUR A1 - Huenemoerder, David P. A1 - Gayley, K. G. A1 - Hamann, Wolf-Rainer A1 - Ignace, R. A1 - Nichols, J. S. A1 - Oskinova, Lida A1 - Pollock, A. M. T. A1 - Schulz, Norbert S. A1 - Shenar, Tomer T1 - Probing Wolf-Rayet winds: Chandra/HETG X-ray spectra of WR 6 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars. KW - stars: individual (WR 6) KW - stars: massive KW - stars: Wolf-Rayet Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/815/1/29 SN - 0004-637X SN - 1538-4357 VL - 815 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Oskinova, Lida A1 - Gayley, K. G. A1 - Hamann, Wolf-Rainer A1 - Huenemoerder, D. P. A1 - Ignace, R. A1 - Pollock, A. M. T. T1 - HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS JF - ASTROPHYSICAL JOURNAL LETTERS N2 - We present the first high-resolutionX-ray spectrum of a putatively singleWolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, "cool" stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at approximate to 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow "sticky clumps" that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds. KW - stars: individual (WR 6) KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - X-rays: stars Y1 - 2012 U6 - https://doi.org/10.1088/2041-8205/747/2/L25 SN - 2041-8205 VL - 747 IS - 2 PB - IOP PUBLISHING LTD CY - BRISTOL ER -