TY - JOUR A1 - Hyde, Stephen T. A1 - Evans, Myfanwy E. T1 - Symmetric tangled Platonic polyhedra JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Conventional embeddings of the edge-graphs of Platonic polyhedra, {f,z}, where f,z denote the number of edges in each face and the edge-valence at each vertex, respectively, are untangled in that they can be placed on a sphere (S-2) such that distinct edges do not intersect, analogous to unknotted loops, which allow crossing-free drawings of S-1 on the sphere. The most symmetric (flag-transitive) realizations of those polyhedral graphs are those of the classical Platonic polyhedra, whose symmetries are *2fz, according to Conway's two-dimensional (2D) orbifold notation (equivalent to Schonflies symbols I-h, O-h, and T-d). Tangled Platonic {f,z} polyhedra-which cannot lie on the sphere without edge-crossings-are constructed as windings of helices with three, five, seven,... strands on multigenus surfaces formed by tubifying the edges of conventional Platonic polyhedra, have (chiral) symmetries 2fz (I, O, and T), whose vertices, edges, and faces are symmetrically identical, realized with two flags. The analysis extends to the "theta(z)" polyhedra, {2,z}. The vertices of these symmetric tangled polyhedra overlap with those of the Platonic polyhedra; however, their helicity requires curvilinear (or kinked) edges in all but one case. We show that these 2fz polyhedral tangles are maximally symmetric; more symmetric embeddings are necessarily untangled. On one hand, their topologies are very constrained: They are either self-entangled graphs (analogous to knots) or mutually catenated entangled compound polyhedra (analogous to links). On the other hand, an endless variety of entanglements can be realized for each topology. Simpler examples resemble patterns observed in synthetic organometallic materials and clathrin coats in vivo. KW - regular polyhedra KW - compound polyhedra KW - helicates KW - metal-organic KW - frameworks KW - clathrin Y1 - 2022 U6 - https://doi.org/10.1073/pnas.2110345118 SN - 0027-8424 SN - 1091-6490 VL - 119 IS - 1 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Wessig, Pablo A1 - Gerngroß, Maik A1 - Pape, Simon A1 - Bruhns, Philipp A1 - Weber, Jens T1 - Novel porous materials based on oligospiroketals (OSK) JF - RSC Advances : an international journal to further the chemical sciences N2 - New porous materials based on covalently connected monomers are presented. The key step of the synthesis is an acetalisation reaction. In previous years we used acetalisation reactions extensively to build up various molecular rods. Based on this approach, investigations towards porous polymeric materials were conducted by us. Here we wish to present the results of these studies in the synthesis of 1D polyacetals and porous 3D polyacetals. By scrambling experiments with 1D acetals we could prove that exchange reactions occur between different building blocks (evidenced by MALDI-TOF mass spectrometry). Based on these results we synthesized porous 3D polyacetals under the same mild conditions. KW - microporous organic polymers KW - molecular rods KW - construction KW - frameworks KW - membranes KW - sorption KW - models Y1 - 2014 U6 - https://doi.org/10.1039/c4ra04437a SN - 2046-2069 VL - 2014 IS - 4 SP - 31123 EP - 31129 ER -