TY - JOUR A1 - Lippold, Holger A1 - Eidner, Sascha A1 - Kumke, Michael Uwe A1 - Lippmann-Pipke, Johanna T1 - Dynamics of metal-humate complexation equilibria as revealed by isotope exchange studies - a matter of concentration and time JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Complexation with dissolved humic matter can be crucial in controlling the mobility of toxic or radioactive contaminant metals. For speciation and transport modelling, a dynamic equilibrium process is commonly assumed, where association and dissociation run permanently. This is, however, questionable in view of reported observations of a growing resistance to dissociation over time. In this study, the isotope exchange principle was employed to gain direct insight into the dynamics of the complexation equilibrium, including kinetic inertisation phenomena. Terbium(III), an analogue of trivalent actinides, was used as a representative of higher-valent metals. Isotherms of binding to (flocculated) humic acid, determined by means of Tb-160 as a radiotracer, were found to be identical regardless of whether the radioisotope was introduced together with the bulk of stable Tb-159 or subsequently after pre-equilibration for up to 3 months. Consequently, there is a permanent exchange of free and humic-bound Tb since all available binding sites are occupied in the plateau region of the isotherm. The existence of a dynamic equilibrium was thus evidenced. There was no indication of an inertisation under these experimental conditions. If the small amount of Tb-160 was introduced prior to saturation with Tb-159, the expected partial desorption of Tb-160 occurred at much lower rates than observed for the equilibration process in the reverse procedure. In addition, the rates decreased with time of pre-equilibration. Inertisation phenomena are thus confined to the stronger sites of humic molecules (occupied at low metal concentrations). Analysing the time-dependent course of isotope exchange according to first-order kinetics indicated that up to 3 years are needed to attain equilibrium. Since, however, metal-humic interaction remains reversible, exchange of metals between humic carriers and mineral surfaces cannot be neglected on the long time scale to be considered in predictive transport models. KW - Humic substances KW - Metal complexation KW - Kinetics KW - Reversibility KW - Isotope exchange KW - Dynamic equilibrium Y1 - 2016 U6 - https://doi.org/10.1016/j.gca.2016.10.019 SN - 0016-7037 SN - 1872-9533 VL - 197 SP - 62 EP - 70 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Burek, Katja A1 - Eidner, Sascha A1 - Kuke, Stefanie A1 - Kumke, Michael Uwe T1 - Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight JF - Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy N2 - The luminescence of Lanthanide(Ill) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and.Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(Ill) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K <= T <= 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M <= 1 <= 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites. KW - Humic substance KW - Model ligand KW - Metal complexation KW - Benzoic acids KW - Intramolecular deactivation Y1 - 2018 U6 - https://doi.org/10.1016/j.saa.2017.09.012 SN - 1386-1425 VL - 191 SP - 36 EP - 49 PB - Elsevier CY - Oxford ER -