TY - JOUR A1 - Wells, Robert A1 - Poppenhäger, Katja A1 - Watson, C. A. T1 - Validation of a temperate fourth planet in the K2-133 multiplanet system JF - Monthly notices of the Royal Astronomical Society N2 - We present follow-up observations of the K2-133 multiplanet system. Previously, we announced that K2-133 contained three super-Earths orbiting an M1.5V host star – with tentative evidence of a fourth outer-planet orbiting at the edge of the temperate zone. Here, we report on the validation of the presence of the fourth planet, determining a radius of 1.73+0.14−0.13 R⊕. The four planets span the radius gap of the exoplanet population, meaning further follow-up would be worthwhile to obtain masses and test theories of the origin of the gap. In particular, the trend of increasing planetary radius with decreasing incident flux in the K2-133 system supports the claim that the gap is caused by photo-evaporation of exoplanet atmospheres. Finally, we note that K2-133 e orbits on the edge of the star's temperate zone, and that our radius measurement allows for the possibility that this is a rocky world. Additional mass measurements are required to confirm or refute this scenario. KW - techniques: photometric KW - planets and satellites: general KW - stars: individual: LP 358-499 KW - stars: individual: K2-133 KW - stars: low-mass Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz1334 SN - 0035-8711 SN - 1365-2966 VL - 487 IS - 2 SP - 1865 EP - 1873 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Poppenhäger, Katja T1 - How stars and planets interact BT - A look through the high-energy window JF - Astronomische Nachrichten = Astronomical notes N2 - The architecture of exoplanetary systems is often different from the solar system, with some exoplanets being in close orbits around their host stars and having orbital periods of only a few days. In analogy to interactions between stars in close binary systems, one may expect interactions between the star and the exoplanet as well. From theoretical considerations, effects on the host star through tidal and magnetic interaction with the exoplanet are possible; for the exoplanet, some interesting implications are the evaporation of the planetary atmosphere and potential effects on the planetary magnetism. In this review, several possible interaction pathways and their observational prospects and existing evidence are discussed. A particular emphasis is put on observational opportunities for these kinds of effects in the high-energy regime. KW - magnetic fields KW - planet-star interactions KW - stars KW - activity KW - X-rays Y1 - 2019 U6 - https://doi.org/10.1002/asna.201913619 SN - 0004-6337 SN - 1521-3994 VL - 340 IS - 4 SP - 329 EP - 333 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Eigmüller, Philipp A1 - Chaushev, Alexander A1 - Gillen, Edward A1 - Smith, Alexis A1 - Nielsen, Louise D. A1 - Turner, Oliver A1 - Csizmadia, Szilard A1 - Smalley, Barry A1 - Bayliss, Daniel A1 - Belardi, Claudia A1 - Bouchy, Francois A1 - Burleigh, Matthew R. A1 - Cabrera, Juan A1 - Casewell, Sarah L. A1 - Chazelas, Bruno A1 - Cooke, Benjamin F. A1 - Erikson, Anders A1 - Gansicke, Boris T. A1 - Guenther, Maximilian N. A1 - Goad, Michael R. A1 - Grange, Andrew A1 - Jackman, James A. G. A1 - Jenkins, James S. A1 - McCormac, James A1 - Moyano, Maximiliano A1 - Pollacco, Don A1 - Poppenhäger, Katja A1 - Queloz, Didier A1 - Raynard, Liam A1 - Rauer, Heike A1 - Udry, Stephane A1 - Walker, Simon. R. A1 - Watson, Christopher A. A1 - West, Richard G. A1 - Wheatley, Peter J. T1 - NGTS-5b BT - a highly inflated planet offering insights into the sub-Jovian desert JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Planetary population analysis gives us insight into formation and evolution processes. For short-period planets, the sub-Jovian desert has been discussed in recent years with regard to the planet population in the mass/period and radius/period parameter space without taking stellar parameters into account. The Next Generation Transit Survey (NGTS) is optimised for detecting planets in this regime, which allows for further analysis of the sub-Jovian desert. Aims. With high-precision photometric surveys (e.g. with NGTS and TESS), which aim to detect short period planets especially around M/K-type host stars, stellar parameters need to be accounted for when empirical data are compared to model predictions. Presenting a newly discovered planet at the boundary of the sub-Jovian desert, we analyse its bulk properties and use it to show the properties of exoplanets that border the sub-Jovian desert. Methods. Using NGTS light curve and spectroscopic follow-up observations, we confirm the planetary nature of planet NGTS-5b and determine its mass. Using exoplanet archives, we set the planet in context with other discoveries. Results. NGTS-5b is a short-period planet with an orbital period of 3.3569866 +/- 0.0000026 days. With a mass of 0.229 +/- 0.037 M-Jup and a radius of 1.136 +/- 0.023 R-Jup, it is highly inflated. Its mass places it at the upper boundary of the sub-Jovian desert. Because the host is a K2 dwarf, we need to account for the stellar parameters when NGTS-5b is analysed with regard to planet populations. Conclusions. With red-sensitive surveys (e.g. with NGTS and TESS), we expect many more planets around late-type stars to be detected. An empirical analysis of the sub-Jovian desert should therefore take stellar parameters into account. KW - planets and satellites: detection KW - planets and satellites: gaseous planets Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935206 SN - 1432-0746 VL - 625 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Keles, Engin A1 - Kitzmann, Daniel A1 - Mallonn, Matthias A1 - Alexoudi, Xanthippi A1 - Fossati, Luca A1 - Pino, Lorenzo A1 - Seidel, Julia Victoria A1 - Caroll, Thorsten A. A1 - Steffen, M. A1 - Ilyin, Ilya A1 - Poppenhäger, Katja A1 - Strassmeier, Klaus G. A1 - von Essen, Carolina A1 - Nascimbeni, Valerio A1 - Turner, Jake D. T1 - Probing the atmosphere of HD189733b with the Na i and K i lines JF - Monthly Notices of the Royal Astronomical Society N2 - High spectral resolution transmission spectroscopy is a powerful tool to characterize exoplanet atmospheres. Especially for hot Jupiters, this technique is highly relevant, due to their high-altitude absorption, e.g. from resonant sodium (Na i) and potassium (K i) lines. We resolve the atmospheric K i absorption on HD189733b with the aim to compare the resolved K i line and previously obtained high-resolution Na i-D line observations with synthetic transmission spectra. The line profiles suggest atmospheric processes leading to a line broadening of the order of ∼10 km/s for the Na i-D lines and only a few km/s for the K i line. The investigation hints that either the atmosphere of HD189733b lacks a significant amount of K i or the alkali lines probe different atmospheric regions with different temperature, which could explain the differences we see in the resolved absorption lines. Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa2435 VL - 498 IS - 1 SP - 1033 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Poppenhäger, Katja A1 - Ketzer, Laura A1 - Mallonn, Matthias T1 - X-ray irradiation and evaporation of the four young planets around V1298 Tau JF - Monthly notices of the Royal Astronomical Society N2 - Planets around young stars are thought to undergo atmospheric evaporation due to the high magnetic activity of the host stars. Here we report on X-ray observations of V1298 Tau, a young star with four transiting exoplanets. We use X-ray observations of the host star with Chandra and ROSAT to measure the current high-energy irradiation level of the planets and employ a model for the stellar activity evolution together with exoplanetary mass-loss to estimate the possible evolution of the planets. We find that V1298 Tau is X-ray bright with log L-X [erg s(-1)] = 30.1 and has a mean coronal temperature of approximate to 9 MK. This places the star amongst the more X-ray luminous ones at this stellar age. We estimate the radiation-driven mass-loss of the exoplanets and find that it depends sensitively on the possible evolutionary spin-down tracks of the star as well as on the current planetary densities. Assuming the planets are of low density due to their youth, we find that the innermost two planets can lose significant parts of their gaseous envelopes and could be evaporated down to their rocky cores depending on the stellar spin evolution. However, if the planets are heavier and follow the mass-radius relation of older planets, then even in the highest XUV irradiation scenario none of the planets is expected to cross the radius gap into the rocky regime until the system reaches an age of 5 Gyr. KW - planets and satellites: atmospheres KW - planet-star interactions KW - stars: activity KW - stars: individual: V1298 Tau KW - X-rays: stars Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa1462 SN - 0035-8711 SN - 1365-2966 VL - 500 IS - 4 SP - 4560 EP - 4572 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Alexoudi, Xanthippi A1 - Mallonn, Matthias A1 - Keles, Engin A1 - Poppenhäger, Katja A1 - von Essen, Carolina A1 - Strassmeier, Klaus T1 - Role of the impact parameter in exoplanet transmission spectroscopy JF - Astronomy and astrophysics : an international weekly journal N2 - Context Transmission spectroscopy is a promising tool for the atmospheric characterization of transiting exoplanets. Because the planetary signal is faint, discrepancies have been reported regarding individual targets. Aims We investigate the dependence of the estimated transmission spectrum on deviations of the orbital parameters of the star-planet system that are due to the limb-darkening effects of the host star. We describe how the uncertainty on the orbital parameters translates into an uncertainty on the planetary spectral slope. Methods We created synthetic transit light curves in seven different wavelength bands, from the near-ultraviolet to the near-infrared, and fit them with transit models parameterized by fixed deviating values of the impact parameter b. First, we performed a qualitative study to illustrate the effect by presenting the changes in the transmission spectrum slope with different deviations of b. Then, we quantified these variations by creating an error envelope (for centrally transiting, off-center, and grazing systems) based on a derived typical uncertainty on b from the literature. Finally, we compared the variations in the transmission spectra for different spectral types of host stars. Results Our simulations show a wavelength-dependent offset that is more pronounced at the blue wavelengths where the limb-darkening effect is stronger. This offset introduces a slope in the planetary transmission spectrum that becomes steeper with increasing b values. Variations of b by positive or negative values within its uncertainty interval introduce positive or negative slopes, thus the formation of an error envelope. The amplitude from blue optical to near-infrared wavelength for a typical uncertainty on b corresponds to one atmospheric pressure scale height and more. This impact parameter degeneracy is confirmed for different host types; K stars present prominently steeper slopes, while M stars indicate features at the blue wavelengths. Conclusions We demonstrate that transmission spectra can be hard to interpret, basically because of the limitations in defining a precise impact parameter value for a transiting exoplanet. This consequently limits a characterization of its atmosphere. KW - planets and satellites: atmospheres KW - planets and satellites: gaseous KW - planets Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-605378 SN - 0004-6361 SN - 1432-0746 VL - 640 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Foster, Mary Grace A1 - Poppenhäger, Katja A1 - Alvarado-Gómez, Julián David A1 - Schmitt, Jürgen T1 - The corona of GJ 1151 in the context of star-planet interaction JF - Monthly notices of the Royal Astronomical Society N2 - The low-mass star GJ 1151 has been reported to display variable low-frequency radio emission, which has been interpreted as a signpost of coronal star-planet interactions with an unseen exoplanet. Here we report the first X-ray detection of GJ 1151's corona based on the XMM-Newton data. We find that the star displays a small flare during the X-ray observation. Averaged over the observation, we detect the star with a low coronal temperature of 1.6 MK and an X-ray luminosity of L-X = 5.5 x 10(26) erg s(-1). During the quiescent time periods excluding the flare, the star remains undetected with an upper limit of L-X,L- qui <= 3.7 x 10(26) erg s(-1). This is compatible with the coronal assumptions used in a recently published model for a star-planet interaction origin of the observed radio signals from this star. KW - planet KW - star interactions KW - stars: coronae KW - X-rays: individual: GJ 1151 Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa1982 SN - 0035-8711 SN - 1365-2966 VL - 497 IS - 1 SP - 1015 EP - 1019 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Keles, Engin A1 - Mallom, Matthias A1 - von Essen, Carolina A1 - Caroll, Thorsten A. A1 - Alexoudi, Xanthippi A1 - Pino, Lorenzo A1 - Ilyin, Ilya A1 - Poppenhäger, Katja A1 - Kitzmann, Daniel A1 - Nascimbeni, Valerino A1 - Turner, Jake D. A1 - Strassmeier, Klaus G. T1 - The potassium absorption on HD189733b and HD209458b JF - Monthly Notices of the Royal Astronomical Society: Letters N2 - In this work, we investigate the potassium excess absorption around 7699 Å of the exoplanets HD189733b and HD209458b. For this purpose, we used high-spectral resolution transit observations acquired with the 2 × 8.4 m Large Binocular Telescope (LBT) and the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI). For a bandwidth of 0.8 Å, we present a detection >7σ with an absorption level of 0.18 per cent for HD189733b. Applying the same analysis to HD209458b, we can set 3σ upper limit of 0.09 per cent, even though we do not detect a K-excess absorption. The investigation suggests that the K feature is less present in the atmosphere of HD209458b than in the one of HD189733b. This comparison confirms previous claims that the atmospheres of these two planets must have fundamentally different properties. Y1 - 2021 U6 - https://doi.org/10.1093/mnrasl/slz123 VL - 489 IS - 1 SP - L37 EP - L41 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Mallonn, Matthias A1 - Poppenhäger, Katja A1 - Granzer, Thomas A1 - Weber, Michael A1 - Strassmeier, Klaus G. T1 - Detection capability of ground-based meter-sized telescopes for shallow exoplanet transits JF - Astronomy and astrophysics : an international weekly journal N2 - Meter-sized ground-based telescopes are frequently used today for the follow-up of extrasolar planet candidates. While the transit signal of a Jupiter-sized object can typically be detected to a high level of confidence with small telescope apertures as well, the shallow transit dips of planets with the size of Neptune and smaller are more challenging to reveal. We employ new observational data to illustrate the photometric follow-up capabilities of meter-sized telescopes for shallow exoplanet transits. We describe in detail the capability of distinguishing the photometric signal of an exoplanet transit from an underlying trend in the light curve. The transit depths of the six targets we observed, Kepler-94b, Kepler-63b, K2-100b, K2-138b, K2-138c, and K2-138e, range from 3.9 ppt down to 0.3 ppt. For five targets of this sample, we provide the first ground-based photometric follow-up. The timing of three targets is precisely known from previous observations, and the timing of the other three targets is uncertain and we aim to constrain it. We detect or rule out the transit features significantly in single observations for the targets that show transits of 1.3 ppt or deeper. The shallower transit depths of two targets of 0.6 and 0.8 ppt were detected tentatively in single light curves, and were detected significantly by repeated observations. Only for the target of the shallowest transit depth of 0.3 ppt were we unable to draw a significant conclusion despite combining five individual light curves. An injection-recovery test on our real data shows that we detect transits of 1.3 ppt depth significantly in single light curves if the transit is fully covered, including out-of-transit data toward both sides, in some cases down to 0.7 ppt depth. For Kepler-94b, Kepler-63b, and K2-100b, we were able to verify the ephemeris. In the case of K2-138c with a 0.6 ppt deep transit, we were able to refine it, and in the case of K2-138e, we ruled out the transit in the time interval of more than ±1.5 σ of its current literature ephemeris. KW - methods: observational KW - techniques: photometric KW - planets and satellites: fundamental parameters Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202140599 SN - 0004-6361 SN - 1432-0746 VL - 657 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Poppenhäger, Katja T1 - Helium absorption in exoplanet atmospheres is connected to stellar coronal abundances JF - Monthly notices of the Royal Astronomical Society N2 - Transit observations in the helium triplet around 10 830 Angstrom are a successful tool to study exoplanetary atmospheres and their mass loss. Forming those lines requires ionization and recombination of helium in the exoplanetary atmosphere. This ionization is caused by stellar photons at extreme ultraviolet (EUV) wavelengths; however, no currently active telescopes can observe this part of the stellar spectrum. The relevant part of the stellar EUV spectrum consists of individual emission lines, many of them being formed by iron at coronal temperatures. The stellar iron abundance in the corona is often observed to be depleted for high-activity low-mass stars due to the first ionization potential (FIP) effect. I show that stars with high versus low coronal iron abundances follow different scaling laws that tie together their X-ray emission and the narrow-band EUV flux that causes helium ionization. I also show that the stellar iron to oxygen abundance ratio in the corona can be measured reasonably well from X-ray CCD spectra, yielding similar results to high-resolution X-ray observations. Taking coronal iron abundance into account, the currently observed large scatter in the relationship of EUV irradiation with exoplanetary helium transit depths can be reduced, improving the target selection criteria for exoplanet transmission spectroscopy. In particular, previously puzzling non-detections of helium for Neptunic exoplanets are now in line with expectations from the revised scaling laws. KW - planets and satellites: atmospheres KW - stars: abundances KW - stars: coronae KW - stars: late-type KW - ultraviolet: stars KW - X-rays: stars Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac507 SN - 0035-8711 SN - 1365-2966 VL - 512 IS - 2 SP - 1751 EP - 1764 PB - Oxford Univ. Press CY - Oxford ER -