TY - JOUR A1 - Mehner, T. A1 - Attermeyer, Katrin A1 - Brauns, Mario A1 - Brothers, Soren M. A1 - Diekmann, J. A1 - Gaedke, Ursula A1 - Grossart, Hans-Peter A1 - Koehler, J. A1 - Lischke, Betty A1 - Meyer, N. A1 - Scharnweber, Inga Kristin A1 - Syvaranta, J. A1 - Vanni, M. J. A1 - Hilt, S. T1 - Weak Response of Animal Allochthony and Production to Enhanced Supply of Terrestrial Leaf Litter in Nutrient-Rich Lakes JF - Ecosystems N2 - Ecosystems are generally linked via fluxes of nutrients and energy across their boundaries. For example, freshwater ecosystems in temperate regions may receive significant inputs of terrestrially derived carbon via autumnal leaf litter. This terrestrial particulate organic carbon (POC) is hypothesized to subsidize animal production in lakes, but direct evidence is still lacking. We divided two small eutrophic lakes each into two sections and added isotopically distinct maize litter to the treatment sections to simulate increased terrestrial POC inputs via leaf litter in autumn. We quantified the reliance of aquatic consumers on terrestrial resources (allochthony) in the year subsequent to POC additions by applying mixing models of stable isotopes. We also estimated lake-wide carbon (C) balances to calculate the C flow to the production of the major aquatic consumer groups: benthic macroinvertebrates, crustacean zooplankton, and fish. The sum of secondary production of crustaceans and benthic macroinvertebrates supported by terrestrial POC was higher in the treatment sections of both lakes. In contrast, total secondary and tertiary production (supported by both autochthonous and allochthonous C) was higher in the reference than in the treatment sections of both lakes. Average aquatic consumer allochthony per lake section was 27-40%, although terrestrial POC contributed less than about 10% to total organic C supply to the lakes. The production of aquatic consumers incorporated less than 5% of the total organic C supply in both lakes, indicating a low ecological efficiency. We suggest that the consumption of terrestrial POC by aquatic consumers facilitates a strong coupling with the terrestrial environment. However, the high autochthonous production and the large pool of autochthonous detritus in these nutrient-rich lakes make terrestrial POC quantitatively unimportant for the C flows within food webs. KW - stable isotopes KW - terrestrial subsidy KW - carbon budget KW - ecological efficiency KW - benthic food web KW - pelagic food web Y1 - 2016 U6 - https://doi.org/10.1007/s10021-015-9933-2 SN - 1432-9840 SN - 1435-0629 VL - 19 SP - 311 EP - 325 PB - Springer CY - New York ER - TY - JOUR A1 - Seifert, Linda I. A1 - Weithoff, Guntram A1 - Gaedke, Ursula A1 - Vos, Matthijs T1 - Warming-induced changes in predation, extinction and invasion in an ectotherm food web JF - Oecologia N2 - Climate change will alter the forces of predation and competition in temperate ectotherm food webs. This may increase local extinction rates, change the fate of invasions and impede species reintroductions into communities. Invasion success could be modulated by traits (e.g., defenses) and adaptations to climate. We studied how different temperatures affect the time until extinction of species, using bitrophic and tritrophic planktonic food webs to evaluate the relative importance of predatory overexploitation and competitive exclusion, at 15 and 25 A degrees C. In addition, we tested how inclusion of a subtropical as opposed to a temperate strain in this model food web affects times until extinction. Further, we studied the invasion success of the temperate rotifer Brachionus calyciflorus into the planktonic food web at 15 and 25 A degrees C on five consecutive introduction dates, during which the relative forces of predation and competition differed. A higher temperature dramatically shortened times until extinction of all herbivore species due to carnivorous overexploitation in tritrophic systems. Surprisingly, warming did not increase rates of competitive exclusion among the tested herbivore species in bitrophic communities. Including a subtropical herbivore strain reduced top-down control by the carnivore at high temperature. Invasion attempts of temperate B. calyciflorus into the food web always succeeded at 15 A degrees C, but consistently failed at 25 A degrees C due to voracious overexploitation by the carnivore. Pre-induction of defenses (spines) in B. calyciflorus before the invasion attempt did not change its invasion success at the high temperature. We conclude that high temperatures may promote local extinctions in temperate ectotherms and reduce their chances of successful recovery. KW - Community dynamics KW - Freshwater ecosystem KW - Global warming KW - Species range shift KW - Trophic interactions Y1 - 2015 U6 - https://doi.org/10.1007/s00442-014-3211-4 SN - 0029-8549 SN - 1432-1939 VL - 178 IS - 2 SP - 485 EP - 496 PB - Springer CY - New York ER - TY - JOUR A1 - Aberle-Malzahn, Nicole A1 - Bauer, Barbara A1 - Lewandowska, A. A1 - Gaedke, Ursula A1 - Sommer, U. T1 - Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production JF - Marine biology : international journal on life in oceans and coastal waters N2 - Indoor mesocosm experiments were conducted to test for potential climate change effects on the spring succession of Baltic Sea plankton. Two different temperature (Delta 0 A degrees C and Delta 6 A degrees C) and three light scenarios (62, 57 and 49 % of the natural surface light intensity on sunny days), mimicking increasing cloudiness as predicted for warmer winters in the Baltic Sea region, were simulated. By combining experimental and modeling approaches, we were able to test for a potential dietary mismatch between phytoplankton and zooplankton. Two general predator-prey models, one representing the community as a tri-trophic food chain and one as a 5-guild food web were applied to test for the consequences of different temperature sensitivities of heterotrophic components of the plankton. During the experiments, we observed reduced time-lags between the peaks of phytoplankton and protozoan biomass in response to warming. Microzooplankton peak biomass was reached by 2.5 day A degrees C-1 earlier and occurred almost synchronously with biomass peaks of phytoplankton in the warm mesocosms (Delta 6 A degrees C). The peak magnitudes of microzooplankton biomass remained unaffected by temperature, and growth rates of microzooplankton were higher at Delta 6 A degrees C (mu(a dagger 0 A degrees C) = 0.12 day(-1) and mu(a dagger 6 A degrees C) = 0.25 day(-1)). Furthermore, warming induced a shift in microzooplankton phenology leading to a faster species turnover and a shorter window of microzooplankton occurrence. Moderate differences in the light levels had no significant effect on the time-lags between autotrophic and heterotrophic biomass and on the timing, biomass maxima and growth rate of microzooplankton biomass. Both models predicted reduced time-lags between the biomass peaks of phytoplankton and its predators (both microzooplankton and copepods) with warming. The reduction of time-lags increased with increasing Q(10) values of copepods and protozoans in the tritrophic food chain. Indirect trophic effects modified this pattern in the 5-guild food web. Our study shows that instead of a mismatch, warming might lead to a stronger match between protist grazers and their prey altering in turn the transfer of matter and energy toward higher trophic levels. Y1 - 2012 U6 - https://doi.org/10.1007/s00227-012-1947-0 SN - 0025-3162 VL - 159 IS - 11 SP - 2441 EP - 2453 PB - Springer CY - New York ER - TY - JOUR A1 - Rocha, Marcia R. A1 - Vasseur, David A. A1 - Hayn, Michael A1 - Holschneider, Matthias A1 - Gaedke, Ursula T1 - Variability patterns differ between standing stock and process rates JF - Oikos N2 - Standing stocks are typically easier to measure than process rates such as production. Hence, stocks are often used as indicators of ecosystem functions although the latter are generally more strongly related to rates than to stocks. The regulation of stocks and rates and thus their variability over time may differ, as stocks constitute the net result of production and losses. Based on long-term high frequency measurements in a large, deep lake we explore the variability patterns in primary and bacterial production and relate them to those of the corresponding standing stocks, i.e. chlorophyll concentration, phytoplankton and bacterial biomass. We employ different methods (coefficient of variation, spline fitting and spectral analysis) which complement each other for assessing the variability present in the plankton data, at different temporal scales. In phytoplankton, we found that the overall variability of primary production is dominated by fluctuations at low frequencies, such as the annual, whereas in stocks and chlorophyll in particular, higher frequencies contribute substantially to the overall variance. This suggests that using standing stocks instead of rate measures leads to an under- or overestimation of food shortage for consumers during distinct periods of the year. The range of annual variation in bacterial production is 8 times greater than biomass, showing that the variability of bacterial activity (e.g. oxygen consumption, remineralisation) would be underestimated if biomass is used. The P/B ratios were variable and although clear trends are present in both bacteria and phytoplankton, no systematic relationship between stock and rate measures were found for the two groups. Hence, standing stock and process rate measures exhibit different variability patterns and care is needed when interpreting the mechanisms and implications of the variability encountered. Y1 - 2011 U6 - https://doi.org/10.1111/j.1600-0706.2010.18786.x SN - 0030-1299 VL - 120 IS - 1 SP - 17 EP - 25 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Hartwich, Melanie A1 - Straile, Dietmar A1 - Gaedke, Ursula A1 - Wacker, Alexander T1 - Use of ciliate and phytoplankton taxonomic composition for the estimation of eicosapentaenoic acid concentration in lakes JF - Freshwater biology N2 - 1. The polyunsaturated fatty acid eicosapentaenoic acid (EPA) plays an important role in aquatic food webs, in particular at the primary producerconsumer interface where keystone species such as daphnids may be constrained by its dietary availability. Such constraints and their seasonal and interannual changes may be detected by continuous measurements of EPA concentrations. However, such EPA measurements became common only during the last two decades, whereas long-term data sets on plankton biomass are available for many well-studied lakes. Here, we test whether it is possible to estimate EPA concentrations from abiotic variables (light and temperature) and the biomass of prey organisms (e.g. ciliates, diatoms and cryptophytes) that potentially provide EPA for consumers. 2. We used multiple linear regression to relate size- and taxonomically resolved plankton biomass data and measurements of temperature and light intensity to directly measured EPA concentrations in Lake Constance during a whole year. First, we tested the predictability of EPA concentrations from the biomass of EPA-rich organisms (diatoms, cryptophytes and ciliates). Secondly, we included the variables mean temperature and mean light intensity over the sampling depth (020 m) and depth (08 and 820 m) as factors in our model to check for large-scale seasonal- and depth-dependent effects on EPA concentrations. In a third step, we included the deviations of light and temperature from mean values in our model to allow for their potential influence on the biochemical composition of plankton organisms. We used the Akaike Information Criterion to determine the best models. 3. All approaches supported our proposition that the biomasses of specific plankton groups are variables from which seston EPA concentrations can be derived. The importance of ciliates as an EPA source in the seston was emphasised by their high weight in our models, although ciliates are neglected in most studies that link fatty acids to seston taxonomic composition. The large-scale seasonal variability of light intensity and its interaction with diatom biomass were significant predictors of EPA concentrations. The deviation of temperature from mean values, accounting for a depth-dependent effect on EPA concentrations, and its interaction with ciliate biomass were also variables with high predictive power. 4. The best models from the first and second approaches were validated with measurements of EPA concentrations from another year (1997). The estimation with the best model including only biomass explained 80%, and the best model from the second approach including mean temperature and depth explained 87% of the variability in EPA concentrations in 1997. 5. We show that it is possible to predict EPA concentrations reliably from plankton biomass, while the inclusion of abiotic factors led to results that were only partly consistent with expectations from laboratory studies. Our approach of including biotic predictors should be transferable to other systems and allow checking for biochemical constraints on primary consumers. KW - ciliates KW - diatoms KW - eicosapentaenoic acid KW - light KW - temperature Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2427.2012.02799.x SN - 0046-5070 VL - 57 IS - 7 SP - 1385 EP - 1398 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Tittel, Jörg A1 - Bork, Rudolf A1 - Röpke, Björn A1 - Geldmacher, Karl A1 - Schnur, Tilo A1 - Faust, Berno A1 - Schaphoff, Sibyll A1 - Dalchow, Claus A1 - Woithe, Franka A1 - Bronstert, Axel A1 - Jeltsch, Florian A1 - Jessel, Beate A1 - Zschalich, Andrea A1 - Rößling, Holger A1 - Spindler, Joris A1 - Gaedke, Ursula A1 - Tielbörger, Katja A1 - Kadmon, R. A1 - Müller, J. A1 - Bissinger, Vera A1 - Weithoff, Guntram A1 - Wallschläger, Hans-Dieter A1 - Wiegleb, Gerhard T1 - Umweltforschung für das Land Brandenburg BT - Projekt Ökologie und Naturschutz / Landschaftsplanung / Landschaftsentwicklung JF - Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam N2 - BISSINGER, V.; TITTEL, J.: Process rates and growth limiting factors of planktonic algae (Chlamydomonas sp.) from extremely acidic (pH 2,5 - 3) mining lakes in Germany ; BORK, H.-R. et al.: Erodierte Autos und Brunnen in Oregon, USA ; BRONSTERT, A. et al.: Bewirtschaftunsmöglichkeiten im Einzugsgebiet der Havel ; JELTSCH, F. et al.: Beweidung als Degradationsfaktor in ariden und semiariden Weidesystemen ; JELTSCH, F. et al.: Entstehung und Bedeutung räumlicher Vegetationsstrukturen in Trockensavannen: Baum-Graskoexistenz und Artenvielfalt ; JESSEL, B. et al.: Bodenbewertung für Planungs- und Zulassungsverfahren in Brandenburg ; JESSEL, B.; ZSCHALICH, A.: Erarbeitung von Ausgleichs- und Ersatzmaßnahmen für die Wert- und Funktionselemente des Landschaftsbildes ; RÖßLING, H. et al.: Umsetzung von Ausgleichs- und Ersatzmaßnahmen beim Ausbau der Bundesautobahn A 9 ; SPINDLER, J.; GAEDKE, U.: Estimating production in plankton food webs from biomass size spectra and allometric relationships ; TIELBÖRGER, K. et al.: Sukzessionsprozesse in einem Sanddünengebiet nach Ausschluß von Beweidung ; TIELBÖRGER, K. et al.: Populationsdynamische Funktionen von Ausbreitung und Dormanz ; TIELBÖRGER, K. et al.: Raum-zeitliche Populationsdynamik von einjährigen Wüstenpflanzen ; TITTEL, J. et al.: Ressourcennutzung und -weitergabe im planktischen Nahrungsnetz eines extrem sauren (pH 2,7) Tagebausees ; WALLSCHLÄGER, D.; WIEGLEB, G.: Offenland-Management auf ehemaligen und in Nutzung befindlichen Truppenübungsplätzen im pleistozänen Flachland Nordostdeutschlands: Naturschutzfachliche Grundlagen und praktische Anwendungen ; WEITHOFF, G.; GAEDKE, U.: Planktische Räuber-Beute-Systeme: Experimentelle Untersuchung von ökologischen Synchronisationen Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-3828 SN - 1434-2375 SN - 1611-9339 VL - 8 SP - 80 EP - 134 ER - TY - JOUR A1 - Rößling, Holger A1 - Gaedke, Ursula T1 - Umsetzung von Ausgleichs- und Ersatzmaßnahmen beim Ausbau der Bundesautobahn A 9 Y1 - 2000 ER - TY - JOUR A1 - Mehner, Thomas A1 - Attermeyer, Katrin A1 - Brauns, Mario A1 - Brothers, Soren A1 - Hilt, Sabine A1 - Scharnweber, Kristin A1 - Dorst, Renee Minavan A1 - Vanni, Michael J. A1 - Gaedke, Ursula T1 - Trophic transfer efficiency in lakes JF - Ecosystems N2 - Trophic transfer efficiency (TTE) is usually calculated as the ratio of production rates between two consecutive trophic levels. Although seemingly simple, TTE estimates from lakes are rare. In our review, we explore the processes and structures that must be understood for a proper lake TTE estimate. We briefly discuss measurements of production rates and trophic positions and mention how ecological efficiencies, nutrients (N, P) and other compounds (fatty acids) affect energy transfer between trophic levels and hence TTE. Furthermore, we elucidate how TTE estimates are linked with size-based approaches according to the Metabolic Theory of Ecology, and how food-web models can be applied to study TTE in lakes. Subsequently, we explore temporal and spatial heterogeneity of production and TTE in lakes, with a particular focus on the links between benthic and pelagic habitats and between the lake and the terrestrial environment. We provide an overview of TTE estimates from lakes found in the published literature. Finally, we present two alternative approaches to estimating TTE. First, TTE can be seen as a mechanistic quantity informing about the energy and matter flow between producer and consumer groups. This approach is informative with respect to food-web structure, but requires enormous amounts of data. The greatest uncertainty comes from the proper consideration of basal production to estimate TTE of omnivorous organisms. An alternative approach is estimating food-chain and food-web efficiencies, by comparing the heterotrophic production of single consumer levels or the total sum of all heterotrophic production including that of heterotrophic bacteria to the total sum of primary production. We close the review by pointing to a few research questions that would benefit from more frequent and standardized estimates of TTE in lakes. KW - stoichiometry KW - production rates KW - trophic position KW - fatty acids KW - land-water coupling KW - food-web models Y1 - 2022 U6 - https://doi.org/10.1007/s10021-022-00776-3 SN - 1432-9840 SN - 1435-0629 VL - 25 IS - 8 SP - 1628 EP - 1652 PB - Springer CY - New York ER - TY - JOUR A1 - Ehrlich, Elias A1 - Becks, Lutz A1 - Gaedke, Ursula T1 - Trait-fitness relationships determine how trade-off shapes affect species coexistence JF - Ecology : a publication of the Ecological Society of America N2 - Trade-offs between functional traits are ubiquitous in nature and can promote species coexistence depending on their shape. Classic theory predicts that convex trade-offs facilitate coexistence of specialized species with extreme trait values (extreme species) while concave trade-offs promote species with intermediate trait values (intermediate species). We show here that this prediction becomes insufficient when the traits translate non-linearly into fitness which frequently occurs in nature, e.g., an increasing length of spines reduces grazing losses only up to a certain threshold resulting in a saturating or sigmoid trait-fitness function. We present a novel, general approach to evaluate the effect of different trade-off shapes on species coexistence. We compare the trade-off curve to the invasion boundary of an intermediate species invading the two extreme species. At this boundary, the invasion fitness is zero. Thus, it separates trait combinations where invasion is or is not possible. The invasion boundary is calculated based on measurable trait-fitness relationships. If at least one of these relationships is not linear, the invasion boundary becomes non-linear, implying that convex and concave trade-offs not necessarily lead to different coexistence patterns. Therefore, we suggest a new ecological classification of trade-offs into extreme-favoring and intermediate-favoring which differs from a purely mathematical description of their shape. We apply our approach to a well-established model of an empirical predator-prey system with competing prey types facing a trade-off between edibility and half-saturation constant for nutrient uptake. We show that the survival of the intermediate prey depends on the convexity of the trade-off. Overall, our approach provides a general tool to make a priori predictions on the outcome of competition among species facing a common trade-off in dependence of the shape of the trade-off and the shape of the trait-fitness relationships. KW - coexistence KW - competition KW - fitness KW - functional traits KW - invasion boundary KW - neutrality KW - predator-prey model KW - shape KW - trade-offs Y1 - 2017 U6 - https://doi.org/10.1002/ecy.2047 SN - 0012-9658 SN - 1939-9170 VL - 98 SP - 3188 EP - 3198 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Klauschies, Toni A1 - Vasseur, David A. A1 - Gaedke, Ursula T1 - Trait adaptation promotes species coexistence in diverse predator and prey communities JF - Ecology and evolution N2 - Species can adjust their traits in response to selection which may strongly influence species coexistence. Nevertheless, current theory mainly assumes distinct and time-invariant trait values. We examined the combined effects of the range and the speed of trait adaptation on species coexistence using an innovative multispecies predator–prey model. It allows for temporal trait changes of all predator and prey species and thus simultaneous coadaptation within and among trophic levels. We show that very small or slow trait adaptation did not facilitate coexistence because the stabilizing niche differences were not sufficient to offset the fitness differences. In contrast, sufficiently large and fast trait adaptation jointly promoted stable or neutrally stable species coexistence. Continuous trait adjustments in response to selection enabled a temporally variable convergence and divergence of species traits; that is, species became temporally more similar (neutral theory) or dissimilar (niche theory) depending on the selection pressure, resulting over time in a balance between niche differences stabilizing coexistence and fitness differences promoting competitive exclusion. Furthermore, coadaptation allowed prey and predator species to cluster into different functional groups. This equalized the fitness of similar species while maintaining sufficient niche differences among functionally different species delaying or preventing competitive exclusion. In contrast to pre- vious studies, the emergent feedback between biomass and trait dynamics enabled supersaturated coexistence for a broad range of potential trait adaptation and parameters. We conclude that accounting for trait adaptation may explain stable and supersaturated species coexistence for a broad range of environmental conditions in natural systems when the absence of such adaptive changes would preclude it. Small trait changes, coincident with those that may occur within many natural populations, greatly enlarged the number of coexisting species. KW - Coadaptation KW - equalizing and stabilizing mechanisms KW - maintenance of functional diversity KW - niche and fitness differences KW - supersaturated species coexistence KW - trait convergence and divergence Y1 - 2016 U6 - https://doi.org/10.1002/ece3.2172 SN - 2045-7758 PB - John Wiley & Sons, Inc. ER -