TY - JOUR A1 - Kuhla, Kilian A1 - Willner, Sven N. A1 - Otto, Christian A1 - Geiger, Tobias A1 - Levermann, Anders T1 - Ripple resonance amplifies economic welfare loss from weather extremes JF - Environmental research letters : ERL / Institute of Physics N2 - The most complex but potentially most severe impacts of climate change are caused by extreme weather events. In a globally connected economy, damages can cause remote perturbations and cascading consequences-a ripple effect along supply chains. Here we show an economic ripple resonance that amplifies losses when consecutive or overlapping weather extremes and their repercussions interact. This amounts to an average amplification of 21% for climate-induced heat stress, river floods, and tropical cyclones. Modeling the temporal evolution of 1.8 million trade relations between >7000 regional economic sectors, we find that the regional responses to future extremes are strongly heterogeneous also in their resonance behavior. The induced effect on welfare varies between gains due to increased demand in some regions and losses due to demand or supply shortages in others. Within the current global supply network, the ripple resonance effect of extreme weather is strongest in high-income economies-an important effect to consider when evaluating past and future economic climate impacts. KW - consecutive disasters KW - economic ripple resonance KW - repercussion resonance KW - weather extremes KW - supply network KW - climate impacts KW - climate change Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac2932 SN - 1748-9326 VL - 16 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Hickmann, Thomas A1 - Widerberg, Oscar A1 - Lederer, Markus A1 - Pattberg, Philipp H. T1 - The United Nations Framework Convention on Climate Change Secretariat as an orchestrator in global climate policymaking JF - International review of administrative sciences : an international journal of comparative public administration N2 - Scholars have recently devoted increasing attention to the role and function of international bureaucracies in global policymaking. Some of them contend that international public officials have gained significant political influence in various policy fields. Compared to other international bureaucracies, the political leeway of the Secretariat of the United Nations Framework Convention on Climate Change has been considered rather limited. Due to the specific problem structure of the policy domain of climate change, national governments endowed this intergovernmental treaty secretariat with a relatively narrow mandate. However, this article argues that in the past few years, the United Nations Framework Convention on Climate Change Secretariat has gradually loosened its straitjacket and expanded its original spectrum of activity by engaging different sub-national and non-state actors into a policy dialogue using facilitative orchestration as a mode of governance. The present article explores the recent evolution of the United Nations Framework Convention on Climate Change Secretariat and investigates the way in which it initiates, guides, broadens and strengthens sub-national and non-state climate actions to achieve progress in the international climate negotiations.
Points for practitioners
The Secretariat of the United Nations Framework Convention on Climate Change has lately adopted new roles and functions in global climate policymaking. While previously seen as a rather technocratic body that, first and foremost, serves national governments, the Climate Secretariat increasingly interacts with sub-national governments, civil society organizations and private companies to push the global response to climate change forward. We contend that the Climate Secretariat can contribute to global climate policymaking by coordinating and steering the initiatives of non-nation-state actors towards coherence and good practice. KW - climate change KW - environmental policymaking KW - intergovernmental relations KW - international bureaucracies KW - sub-national and non-state actors Y1 - 2021 U6 - https://doi.org/10.1177/0020852319840425 SN - 0020-8523 SN - 1461-7226 VL - 87 IS - 1 SP - 21 EP - 38 PB - Sage CY - Los Angeles, Calif. [u.a.] ER - TY - JOUR A1 - Warszawski, Lila A1 - Kriegler, Elmar A1 - Lenton, Timothy M. A1 - Gaffney, Owen A1 - Jacob, Daniela A1 - Klingenfeld, Daniel A1 - Koide, Ryu A1 - Costa, María Máñez A1 - Messner, Dirk A1 - Nakicenovic, Nebojsa A1 - Schellnhuber, Hans Joachim A1 - Schlosser, Peter A1 - Takeuchi, Kazuhiko A1 - van der Leeuw, Sander A1 - Whiteman, Gail A1 - Rockström, Johan T1 - All options, not silver bullets, needed to limit global warming to 1.5 °C BT - a scenario appraisal JF - Environmental research letters N2 - Climate science provides strong evidence of the necessity of limiting global warming to 1.5 °C, in line with the Paris Climate Agreement. The IPCC 1.5 °C special report (SR1.5) presents 414 emissions scenarios modelled for the report, of which around 50 are classified as '1.5 °C scenarios', with no or low temperature overshoot. These emission scenarios differ in their reliance on individual mitigation levers, including reduction of global energy demand, decarbonisation of energy production, development of land-management systems, and the pace and scale of deploying carbon dioxide removal (CDR) technologies. The reliance of 1.5 °C scenarios on these levers needs to be critically assessed in light of the potentials of the relevant technologies and roll-out plans. We use a set of five parameters to bundle and characterise the mitigation levers employed in the SR1.5 1.5 °C scenarios. For each of these levers, we draw on the literature to define 'medium' and 'high' upper bounds that delineate between their 'reasonable', 'challenging' and 'speculative' use by mid century. We do not find any 1.5 °C scenarios that stay within all medium upper bounds on the five mitigation levers. Scenarios most frequently 'over use' CDR with geological storage as a mitigation lever, whilst reductions of energy demand and carbon intensity of energy production are 'over used' less frequently. If we allow mitigation levers to be employed up to our high upper bounds, we are left with 22 of the SR1.5 1.5 °C scenarios with no or low overshoot. The scenarios that fulfil these criteria are characterised by greater coverage of the available mitigation levers than those scenarios that exceed at least one of the high upper bounds. When excluding the two scenarios that exceed the SR1.5 carbon budget for limiting global warming to 1.5 °C, this subset of 1.5 °C scenarios shows a range of 15–22 Gt CO2 (16–22 Gt CO2 interquartile range) for emissions in 2030. For the year of reaching net zero CO2 emissions the range is 2039–2061 (2049–2057 interquartile range). KW - climate change KW - emissions scenarios KW - 1.5 ◦C KW - negative emissions Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/abfeec SN - 1748-9326 N1 - Corrigendum: 10.1088/1748-9326/acbf6a VL - 16 IS - 6 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Schultes, Anselm A1 - Piontek, Franziska A1 - Soergel, Bjoern A1 - Rogelj, Joeri A1 - Baumstark, Lavinia A1 - Kriegler, Elmar A1 - Edenhofer, Ottmar A1 - Luderer, Gunnar T1 - Economic damages from on-going climate change imply deeper near-term emission cuts JF - Environmental research letters N2 - Pathways toward limiting global warming to well below 2 ∘C, as used by the IPCC in the Fifth Assessment Report, do not consider the climate impacts already occurring below 2 ∘C. Here we show that accounting for such damages significantly increases the near-term ambition of transformation pathways. We use econometric estimates of climate damages on GDP growth and explicitly model the uncertainty in the persistence time of damages. The Integrated Assessment Model we use includes the climate system and mitigation technology detail required to derive near-term policies. We find an optimal carbon price of $115 per tonne of CO2 in 2030. The long-term persistence of damages, while highly uncertain, is a main driver of the near-term carbon price. Accounting for damages on economic growth increases the gap between the currently pledged nationally determined contributions and the welfare-optimal 2030 emissions by two thirds, compared to pathways considering the 2 ∘C limit only. KW - climate change KW - climate mitigation KW - climate impacts KW - integrated assessment Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac27ce SN - 1748-9326 VL - 16 IS - 10 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Han, Sungju A1 - Kuhlicke, Christian T1 - Barriers and drivers for mainstreaming nature-based solutions for flood risks BT - the case of South Korea JF - International journal of disaster risk science N2 - Nature-based solutions (NBS) are seen as a promising adaptation measure that sustainably deals with diverse societal challenges, while simultaneously delivering multiple benefits. Nature-based solutions have been highlighted as a resilient and sustainable means of mitigating floods and other hazards globally. This study examined diverging conceptualizations of NBS, as well as the attitudinal (for example, emotions and beliefs) and contextual (for example, legal and political aspects) barriers and drivers of NBS for flood risks in South Korea. Semistructured interviews were conducted with 11 experts and focused on the topic of flood risk measures and NBS case studies. The analysis found 11 barriers and five drivers in the attitudinal domain, and 13 barriers and two drivers in the contextual domain. Most experts see direct monetary benefits as an important attitudinal factor for the public. Meanwhile, the cost-effectiveness of NBS and their capacity to cope with flood risks were deemed influential factors that could lead decision makers to opt for NBS. Among the contextual factors, insufficient systems to integrate NBS in practice and the ideologicalization of NBS policy were found to be peculiar barriers, which hinder consistent realization of initiatives and a long-term national plan for NBS. Understanding the barriers and drivers related to the mainstreaming of NBS is critical if we are to make the most of such solutions for society and nature. It is also essential that we have a shared definition, expectation, and vision of NBS. KW - climate change KW - flood risk management KW - nature-based solutions (NBS) KW - South Korea Y1 - 2021 U6 - https://doi.org/10.1007/s13753-021-00372-4 SN - 2095-0055 SN - 2192-6395 VL - 12 IS - 5 SP - 661 EP - 672 PB - Springer CY - New York ER - TY - JOUR A1 - Ungelenk, Johannes T1 - Émile Zola and the literary language of climate change JF - Nottingham French studies / University of Nottingham N2 - On 7 February 1861, John Tyndall, professor of natural philosophy, delivered a historical lecture: he could prove that different gases absorb heat to a very different degree, which implies that the temperate conditions provided for by the Earth's atmosphere are dependent on its particular composition of gases. The theoretical foundation of climate science was laid. Ten years later, on the other side of the Channel, a young and ambitious author was working on a comprehensive literary analysis of the French era under the Second Empire. Émile Zola had probably not heard or read of Tyndall's discovery. However, the article makes the case for reading Zola's Rougon-Macquart as an extensive story of climate change. Zola's literary attempts to capture the defining characteristic of the Second Empire led him to the insight that its various milieus were all part of the same ‘climate’: that of an all-encompassing warming. Zola suggests that this climate is man-made: the economic success of the Second Empire is based on heating, in a literal and metaphorical sense, as well as on stoking the steam-engines and creating the hypertrophic atmosphere of the hothouse that enhances life and maximises turnover and profit. In contrast to Tyndall and his audience, Zola sensed the catastrophic consequences of this warming: the Second Empire was inevitably moving towards a final débâcle, i.e. it was doomed to perish in local and ‘global’ climate catastrophes. The article foregrounds the supplementary status of Tyndall's physical and Zola's literary knowledge. As Zola's striking intuition demonstrates, literature appears to have a privileged approach to the phenomenon of man-induced climate change. N2 - Le 7 février 1861, le professeur de philosophie naturelle John Tyndall donna une communication historique: il pouvait prouver que des gaz différents absorbent la chaleur de manière différente, ce qui implique que les conditions tempérées fournies par l’atmosphère terrestre dépendent de sa composition particulière en gaz. Le fondement théorique de la science climatique était posé. Dix ans plus tard, de l'autre côté du Channel, un jeune auteur ambitieux était en train de faire une analyse littéraire globale de la France du Second Empire. Émile Zola n'avait probablement pas entendu parler de la découverte de Tyndall. Cependant, cet article propose de lire les Rougon Macquart de Zola comme une vaste histoire du changement climatique. Les tentatives littéraires entreprises par Zola pour capturer la caractéristique déterminante du Second Empire l'amena à réaliser que ses différents milieux faisaient tous partie du même « climat »: celui d'un réchauffement global. Zola suggère que ce climat est créé par l'humain et que le succès économique du Second Empire est basé sur l'action de chauffer dans un sens littéral et métaphorique, ainsi que sur l'alimentation des machines à vapeur et la création de l'atmosphère hypertrophiée d'une serre qui enrichit la vie et maximise l'écoulement et le profit. Contrairement à Tyndall et à son auditoire, Zola pressentit les conséquences catastrophiques d'un tel réchauffement: le Second Empire s'approchait inévitablement d'une débâcle finale, c'est-à-dire qu'il était voué à périr dans des catastrophes locales et « globales ». KW - Rougon-Macquart KW - climate change KW - John Tyndall KW - global warming KW - climate catastrophe KW - Second Empire KW - changement climatique KW - réchauffement planétaire KW - catastrophe climatique KW - Rougon-Macquart KW - Second Empire KW - John Tyndall Y1 - 2021 U6 - https://doi.org/10.3366/nfs.2021.0331 SN - 0029-4586 SN - 2047-7236 VL - 60 IS - 3 SP - 362 EP - 373 PB - Edinburgh University Press CY - Edinburgh ER - TY - JOUR A1 - Skålevåg, Amalie A1 - Vormoor, Klaus Josef T1 - Daily streamflow trends in Western versus Eastern Norway and their attribution to hydro-meteorological drivers JF - Hydrological processes : an international journal N2 - Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (ostlandet) Norway by applying the Mann-Kendall test and Theil-Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983-2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. ostlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in ostlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration. KW - attribution KW - climate change KW - hydrological change KW - hydro-meteorological KW - driver KW - streamflow trend KW - trend analysis Y1 - 2021 U6 - https://doi.org/10.1002/hyp.14329 SN - 0885-6087 SN - 1099-1085 VL - 35 IS - 8 PB - Wiley CY - New York ER - TY - JOUR A1 - Ungelenk, Johannes T1 - Émile Zola and the Literary Language of Climate Change JF - Nottingham French Studies N2 - On 7 February 1861, John Tyndall, professor of natural philosophy, delivered a historical lecture: he could prove that different gases absorb heat to a very different degree, which implies that the temperate conditions provided for by the Earth's atmosphere are dependent on its particular composition of gases. The theoretical foundation of climate science was laid. Ten years later, on the other side of the Channel, a young and ambitious author was working on a comprehensive literary analysis of the French era under the Second Empire. Émile Zola had probably not heard or read of Tyndall's discovery. However, the article makes the case for reading Zola's Rougon-Macquart as an extensive story of climate change. Zola's literary attempts to capture the defining characteristic of the Second Empire led him to the insight that its various milieus were all part of the same ‘climate’: that of an all-encompassing warming. Zola suggests that this climate is man-made: the economic success of the Second Empire is based on heating, in a literal and metaphorical sense, as well as on stoking the steam-engines and creating the hypertrophic atmosphere of the hothouse that enhances life and maximises turnover and profit. In contrast to Tyndall and his audience, Zola sensed the catastrophic consequences of this warming: the Second Empire was inevitably moving towards a final débâcle, i.e. it was doomed to perish in local and ‘global’ climate catastrophes. The article foregrounds the supplementary status of Tyndall's physical and Zola's literary knowledge. As Zola's striking intuition demonstrates, literature appears to have a privileged approach to the phenomenon of man-induced climate change. N2 - Le 7 février 1861, le professeur de philosophie naturelle John Tyndall donna une communication historique: il pouvait prouver que des gaz différents absorbent la chaleur de manière différente, ce qui implique que les conditions tempérées fournies par l’atmosphère terrestre dépendent de sa composition particulière en gaz. Le fondement théorique de la science climatique était posé. Dix ans plus tard, de l'autre côté du Channel, un jeune auteur ambitieux était en train de faire une analyse littéraire globale de la France du Second Empire. Émile Zola n'avait probablement pas entendu parler de la découverte de Tyndall. Cependant, cet article propose de lire les Rougon Macquart de Zola comme une vaste histoire du changement climatique. Les tentatives littéraires entreprises par Zola pour capturer la caractéristique déterminante du Second Empire l'amena à réaliser que ses différents milieux faisaient tous partie du même « climat »: celui d'un réchauffement global. Zola suggère que ce climat est créé par l'humain et que le succès économique du Second Empire est basé sur l'action de chauffer dans un sens littéral et métaphorique, ainsi que sur l'alimentation des machines à vapeur et la création de l'atmosphère hypertrophiée d'une serre qui enrichit la vie et maximise l'écoulement et le profit. Contrairement à Tyndall et à son auditoire, Zola pressentit les conséquences catastrophiques d'un tel réchauffement: le Second Empire s'approchait inévitablement d'une débâcle finale, c'est-à-dire qu'il était voué à périr dans des catastrophes locales et « globales ». KW - Rougon-Macquart KW - climate change KW - John Tyndall KW - global warming KW - climate catastrophe KW - Second Empire KW - changement climatique KW - réchauffement planétaire KW - catastrophe climatique KW - Second Empire Y1 - 2021 U6 - https://doi.org/https://doi.org/10.3366/nfs.2021.0331 VL - 60 IS - 3 SP - 362 EP - 373 ER -