TY - JOUR A1 - Grimm-Seyfarth, Annegret A1 - Mihoub, Jean-Baptiste A1 - Gruber, Bernd A1 - Henle, Klaus T1 - Some like it hot BT - from individual to population responses of an arboreal arid-zone gecko to local and distant climate JF - Ecological monographs N2 - Accumulating evidence has demonstrated considerable impact of climate change on biodiversity, with terrestrial ectotherms being particularly vulnerable. While climate-induced range shifts are often addressed in the literature, little is known about the underlying ecological responses at individual and population levels. Using a 30-yr monitoring study of the long-living nocturnal gecko Gehyra variegata in arid Australia, we determined the relative contribution of climatic factors acting locally (temperature, rainfall) or distantly (La Nina induced flooding) on ecological processes ranging from traits at the individual level (body condition, body growth) to the demography at population level (survival, sexual maturity, population sizes). We also investigated whether thermoregulatory activity during both active (night) and resting (daytime) periods of the day can explain these responses. Gehyra variegata responded to local and distant climatic effects. Both high temperatures and high water availability enhanced individual and demographic parameters. Moreover, the impact of water availability was scale independent as local rainfall and La Nina induced flooding compensated each other. When water availability was low, however, extremely high temperatures delayed body growth and sexual maturity while survival of individuals and population sizes remained stable. This suggests a trade-off with traits at the individual level that may potentially buffer the consequences of adverse climatic conditions at the population level. Moreover, hot temperatures did not impact nocturnal nor diurnal behavior. Instead, only cool temperatures induced diurnal thermoregulatory behavior with individuals moving to exposed hollow branches and even outside tree hollows for sun-basking during the day. Since diurnal behavioral thermoregulation likely induced costs on fitness, this could decrease performance at both individual and population level under cool temperatures. Our findings show that water availability rather than high temperature is the limiting factor in our focal population of G.variegata. In contrast to previous studies, we stress that drier rather than warmer conditions are expected to be detrimental for nocturnal desert reptiles. Identifying the actual limiting climatic factors at different scales and their functional interactions at different ecological levels is critical to be able to predict reliably future population dynamics and support conservation planning in arid ecosystems. KW - behavioral adaptation KW - body condition KW - body growth rate KW - climate change KW - El Nino Southern Oscillation (ENSO) KW - Gehyra variegata KW - population dynamics KW - population size KW - survival KW - thermoregulation Y1 - 2018 U6 - https://doi.org/10.1002/ecm.1301 SN - 0012-9615 SN - 1557-7015 VL - 88 IS - 3 SP - 336 EP - 352 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kolora, Sree Rohit Raj A1 - Weigert, Anne A1 - Saffari, Amin A1 - Kehr, Stephanie A1 - Walter Costa, Maria Beatriz A1 - Spröer, Cathrin A1 - Indrischek, Henrike A1 - Chintalapati, Manjusha A1 - Lohse, Konrad A1 - Doose, Gero A1 - Overmann, Jörg A1 - Bunk, Boyke A1 - Bleidorn, Christoph A1 - Grimm-Seyfarth, Annegret A1 - Henle, Klaus A1 - Nowick, Katja A1 - Faria, Rui A1 - Stadler, Peter F. A1 - Schlegel, Martin T1 - Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation JF - GigaScience N2 - Background Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. Findings Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. Conclusion The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids. KW - sister species KW - PacBio and Illumina KW - de novo hybrid assembly KW - transcripts KW - noncoding RNA KW - zinc fingers KW - positive selection KW - UV response KW - inversions KW - gene flow Y1 - 2018 U6 - https://doi.org/10.1093/gigascience/giy160 SN - 2047-217X VL - 8 IS - 2 PB - Oxford Univ. Press CY - Oxford ER -