TY - JOUR A1 - Lange, Dietrich A1 - Bedford, J. R. A1 - Moreno, M. A1 - Tilmann, F. A1 - Báez, Juan Carlos A1 - Bevis, M. A1 - Krüger, Frank T1 - Comparison of postseismic afterslip models with aftershock seismicity for three subduction-zone earthquakes: Nias 2005, Maule 2010 and Tohoku 2011 JF - Geophysical journal international N2 - We focus on the relation between seismic and total postseismic afterslip following the Maule M-w 8.8 earthquake on 2010 February 27 in central Chile. First, we calculate the cumulative slip released by aftershock seismicity. We do this by summing up the aftershock regions and slip estimated from scaling relations. Comparing the cumulative seismic slip with afterslip modelswe showthat seismic slip of individual aftershocks exceeds locally the inverted afterslip model from geodetic constraints. As the afterslip model implicitly contains the displacements from the aftershocks, this reflects the tendency of afterslip models to smear out the actual slip pattern. However, it also suggests that locally slip for a number of the larger aftershocks exceeds the aseismic slip in spite of the fact that the total equivalent moment of the afterslip exceeds the cumulative moment of aftershocks by a large factor. This effect, seen weakly for the Maule 2010 and also for the Tohoku 2011 earthquake, can be explained by taking into account the uncertainties of the seismicity and afterslip models. In spite of uncertainties, the hypocentral region of the Nias 2005 earthquake is suggested to release a large fraction of moment almost purely seismically. Therefore, these aftershocks are not driven solely by the afterslip but instead their slip areas have probably been stressed by interseismic loading and the mainshock rupture. In a second step, we divide the megathrust of the Maule 2010 rupture into discrete cells and count the number of aftershocks that occur within 50 km of the centre of each cell as a function of time. We then compare this number to a time-dependent afterslip model by defining the 'afterslip to aftershock ratio' (ASAR) for each cell as the slope of the best fitting line when the afterslip at time t is plotted against aftershock count. Although we find a linear relation between afterslip and aftershocks for most cells, there is significant variability in ASAR in both the downdip and along-strike directions of the megathrust. We compare the spatial distribution of ASAR with the spatial distribution of seismic coupling, coseismic slip and Bouguer gravity anomaly, and in each case we find no significant correlation. KW - Creep and deformation KW - Earthquake dynamics KW - Seismicity and tectonics KW - Continental margins: convergent Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggu292 SN - 0956-540X SN - 1365-246X VL - 199 IS - 2 SP - 784 EP - 799 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Zöller, Gert A1 - Ben-Zion, Yehuda T1 - Large earthquake hazard of the San Jacinto fault zone, CA, from long record of simulated seismicity assimilating the available instrumental and paleoseismic data JF - Pure and applied geophysics N2 - We investigate spatio-temporal properties of earthquake patterns in the San Jacinto fault zone (SJFZ), California, between Cajon Pass and the Superstition Hill Fault, using a long record of simulated seismicity constrained by available seismological and geological data. The model provides an effective realization of a large segmented strike-slip fault zone in a 3D elastic half-space, with heterogeneous distribution of static friction chosen to represent several clear step-overs at the surface. The simulated synthetic catalog reproduces well the basic statistical features of the instrumental seismicity recorded at the SJFZ area since 1981. The model also produces events larger than those included in the short instrumental record, consistent with paleo-earthquakes documented at sites along the SJFZ for the last 1,400 years. The general agreement between the synthetic and observed data allows us to address with the long-simulated seismicity questions related to large earthquakes and expected seismic hazard. The interaction between m a parts per thousand yen 7 events on different sections of the SJFZ is found to be close to random. The hazard associated with m a parts per thousand yen 7 events on the SJFZ increases significantly if the long record of simulated seismicity is taken into account. The model simulations indicate that the recent increased number of observed intermediate SJFZ earthquakes is a robust statistical feature heralding the occurrence of m a parts per thousand yen 7 earthquakes. The hypocenters of the m a parts per thousand yen 5 events in the simulation results move progressively towards the hypocenter of the upcoming m a parts per thousand yen 7 earthquake. KW - Earthquake dynamics KW - Earthquake interaction KW - forecasting KW - prediction KW - Statistical seismology KW - Seismicity and tectonics Y1 - 2014 U6 - https://doi.org/10.1007/s00024-014-0783-1 SN - 0033-4553 SN - 1420-9136 VL - 171 IS - 11 SP - 2955 EP - 2965 PB - Springer CY - Basel ER - TY - JOUR A1 - Braeuer, B. A1 - Asch, Günter A1 - Hofstetter, Rami A1 - Haberland, Christian A1 - Jaser, Darweesh A1 - El-Kelani, Radwan J.. A1 - Weber, Michael H. T1 - Microseismicity distribution in the southern Dead Sea basin and its implications on the structure of the basin JF - Geophysical journal international N2 - While the Dead Sea basin has been studied for a long time, the available knowledge about the detailed seismicity distribution in the area, as well as the deeper structure of the basin, is limited. Therefore, within the framework of the international project DESIRE (DEad Sea Integrated REsearch project), a dense temporary local seismological network was operated in the southern Dead Sea area. We use 530 local earthquakes, having all together 26 730 P- and S-arrival times for a simultaneous inversion of 1-D velocity models, station corrections and precise earthquake locations. Jackknife tests suggest an accuracy of the derived hypocentre locations of about 1 km. Thus, the result is the first clear image of the absolute distribution of the microseismicity of the area, especially in depth. The seismicity is concentrated in the upper crust down to 20 km depth while the lower limit of the seismicity is reached at 31 km depth. The seismic events at the eastern boundary fault (EBF) in the southern part of the study area represent the northward transform motion of the Arabian Plate along the Dead Sea Transform. North of the Boqeq fault the seismic activity represents the transfer of the motion in the pull-apart basin from the eastern to the western boundary. We find that from the surface downward the seismic events are tracing the boundary faults of the basin. The western boundary is mapped down to 12 km depth while the EBF reaches about 17 km depth, forming an asymmetric basin. One fifth of the data set is related to a specific cluster in time and space, which occurred in 2007 February at the western border fault. This cluster is aligned vertically, that is, it is perpendicular to the direction of the dominating left-lateral strike-slip movement at the main transform fault. KW - Seismicity and tectonics KW - Continental tectonics: strike-slip and transform KW - Asia Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-246X.2011.05318.x SN - 0956-540X VL - 188 IS - 3 SP - 873 EP - 878 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Pesicek, J. D. A1 - Engdahl, E. R. A1 - Thurber, C. H. A1 - DeShon, H. R. A1 - Lange, Dietrich T1 - Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30-40 degrees S), Chile JF - Geophysical journal international N2 - We present a new tomographic model of the mantle in the area of the 2010 M8.8 Maule earthquake and surrounding regions. Increased ray coverage provided by the aftershock data allows us to image the detailed subducting slab structure in the mantle, from the region of flat slab subduction north of the Maule rupture to the area of overlapping rupture between the 1960 M9.5 and the 2010 M8.8 events to the south. We have combined teleseismic primary and depth phase arrivals with available local arrivals to better constrain the teleseismic earthquake locations in the region, which we use to conduct nested regionalglobal tomography. The new model reveals the detailed structure of the flat slab and its transition to a more moderately dipping slab in the Maule region. South of the Maule region, a steeply dipping relic slab is imaged from similar to 200 to 1000 km depth that is distinct from the moderately dipping slab above it and from the more northerly slab at similar depths. We interpret the images as revealing both horizontal and vertical tearing of the slab at similar to 38 degrees S to explain the imaged pattern of slab anomalies in the southern portion of the model. In contrast, the transition from a horizontal to moderately subducting slab in the northern portion of the model is imaged as a continuous slab bend. We speculate that the tearing was most likely facilitated by a fracture zone in the downgoing plate or alternatively by a continental scale terrane boundary in the overriding plate. KW - Seismicity and tectonics KW - Seismic tomography KW - Subduction zone processes Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-246X.2012.05624.x SN - 0956-540X VL - 191 IS - 1 SP - 317 EP - 324 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Brietzke, Gilbert B. A1 - Hinzen, Klaus-G. T1 - Comparison of deterministic and stochastic earthquake simulators for fault interactions in the Lower Rhine Embayment, Germany JF - Geophysical journal international N2 - Time-dependent probabilistic seismic hazard assessment requires a stochastic description of earthquake occurrences. While short-term seismicity models are well-constrained by observations, the recurrences of characteristic on-fault earthquakes are only derived from theoretical considerations, uncertain palaeo-events or proxy data. Despite the involved uncertainties and complexity, simple statistical models for a quasi-period recurrence of on-fault events are implemented in seismic hazard assessments. To test the applicability of statistical models, such as the Brownian relaxation oscillator or the stress release model, we perform a systematic comparison with deterministic simulations based on rate- and state-dependent friction, high-resolution representations of fault systems and quasi-dynamic rupture propagation. For the specific fault network of the Lower Rhine Embayment, Germany, we run both stochastic and deterministic model simulations based on the same fault geometries and stress interactions. Our results indicate that the stochastic simulators are able to reproduce the first-order characteristics of the major earthquakes on isolated faults as well as for coupled faults with moderate stress interactions. However, we find that all tested statistical models fail to reproduce the characteristics of strongly coupled faults, because multisegment rupturing resulting from a spatiotemporally correlated stress field is underestimated in the stochastic simulators. Our results suggest that stochastic models have to be extended by multirupture probability distributions to provide more reliable results. KW - Earthquake interaction KW - forecasting KW - and prediction KW - Seismicity and tectonics KW - Statistical seismology Y1 - 2013 U6 - https://doi.org/10.1093/gji/ggt271 SN - 0956-540X SN - 1365-246X VL - 195 IS - 1 SP - 684 EP - 694 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Sen, Ali Tolga A1 - Cesca, Simone A1 - Bischoff, Monika A1 - Meier, Thomas A1 - Dahm, Torsten T1 - Automated full moment tensor inversion of coal mining-induced seismicity JF - Geophysical journal international N2 - Seismicity induced by coal mining in the Ruhr region, Germany, has been monitored continuously over the last 25 yr. In 2006, a dense temporary network (HAMNET) was deployed to locally monitor seismicity induced by longwall mining close to the town of Hamm. Between 2006 July and 2007 July, more than 7000 events with magnitudes M-L from -1.7 to 2.0 were detected. The spatiotemporal distribution of seismicity shows high correlation with the mining activity. In order to monitor rupture processes, we set up an automated source inversion routine and successfully perform double couple and full moment tensor (MT) inversions for more than 1000 events with magnitudes above M-L -0.5. The source inversion is based on a full waveform approach, both in the frequency and in the time domain, providing information about the centroid location, focal mechanism, scalar moment and full MT. Inversion results indicate a strong dominance of normal faulting focal mechanisms, with a steeper plane and a subhorizontal one. Fault planes are oriented parallel to the mining stopes. We classify the focal mechanisms based on their orientation and observe different frequency-magnitude distributions for families of events with different focal mechanisms; the overall frequency-magnitude distribution is not fitting the Gutenberg-Richter relation. Full MTs indicate that non-negligible opening tensile components accompanied normal faulting source mechanisms. Finally, extended source models are investigated for largest events. Results suggest that the rupture processes mostly occurred along the subvertical planes. KW - Geomechanics KW - Fracture and flow KW - Earthquake source observations KW - Seismicity and tectonics Y1 - 2013 U6 - https://doi.org/10.1093/gji/ggt300 SN - 0956-540X SN - 1365-246X VL - 195 IS - 2 SP - 1267 EP - 1281 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Muksin, Umar A1 - Haberland, Christian A1 - Bauer, Klaus A1 - Weber, Michael H. T1 - Three-dimensional upper crustal structure of the geothermal system in Tarutung (North Sumatra, Indonesia) revealed by seismic attenuation tomography JF - Geophysical journal international N2 - The geothermal potential in Tarutung is controlled by both the Sumatra Fault system and young arc volcanism. In this study we use the spatial distribution of seismic attenuation, calculated from local earthquake recordings, to image the 3-D seismic attenuation of the area and relate it with the temperature anomalies and the fluid distribution of the subsurface. A temporary seismic network of 42 stations was deployed around Tarutung and Sarulla (south of Tarutung) for a period of 10 months starting in 2011 May. Within this period, the network recorded 2586 local events. A high-quality subset of 229 events recorded by at least 10 stations was used for the attenuation inversion (tomography). Path-average attenuation (t(p)*) was calculated by using a spectral inversion method. The spread function, the contour lines of the model resolution matrix and the recovery test results show that our 3-D attenuation model (Q(p)) has good resolution around the Tarutung Basin and along the Sarulla graben. High attenuation (low Q(p)) related to the geothermal system is found in the northeast of the Tarutung Basin suggesting fluid pathways from below the Sumatra Fault. The upper part of the studied geothermal system in the Tarutung district seems to be mainly controlled by the fault structure rather than by magmatic activities. In the southwest of the Tarutung Basin, the high attenuation zone is associated with the Martimbang volcano. In the Sarulla region, a low-Q(p) anomaly is found along the graben within the vicinity of the Hopong caldera. KW - Seismicity and tectonics KW - Body waves KW - Seismic attenuation KW - Seismic tomography Y1 - 2013 U6 - https://doi.org/10.1093/gji/ggt383 SN - 0956-540X SN - 1365-246X VL - 195 IS - 3 SP - 2037 EP - 2049 PB - Oxford Univ. Press CY - Oxford ER -