TY - JOUR A1 - Schwensow, Nina I. A1 - Cooke, Brian A1 - Kovaliski, John A1 - Sinclair, Ron A1 - Peacock, David A1 - Fickel, Jörns A1 - Sommer, Simone T1 - Rabbit haemorrhagic disease: virus persistence and adaptation in Australia JF - Evolutionary applications N2 - In Australia, the rabbit haemorrhagic disease virus (RHDV) has been used since 1996 to reduce numbers of introduced European rabbits (Oryctolagus cuniculus) which have a devastating impact on the native Australian environment. RHDV causes regular, short disease outbreaks, but little is known about how the virus persists and survives between epidemics. We examined the initial spread of RHDV to show that even upon its initial spread, the virus circulated continuously on a regional scale rather than persisting at a local population level and that Australian rabbit populations are highly interconnected by virus-carrying flying vectors. Sequencing data obtained from a single rabbit population showed that the viruses that caused an epidemic each year seldom bore close genetic resemblance to those present in previous years. Together, these data suggest that RHDV survives in the Australian environment through its ability to spread amongst rabbit subpopulations. This is consistent with modelling results that indicated that in a large interconnected rabbit meta-population, RHDV should maintain high virulence, cause short, strong disease outbreaks but show low persistence in any given subpopulation. This new epidemiological framework is important for understanding virus-host co-evolution and future disease management options of pest species to secure Australia's remaining natural biodiversity. KW - adaptation KW - calicivirus KW - Oryctolagus cuniculus KW - rabbit haemorrhagic disease virus epidemiology Y1 - 2014 U6 - https://doi.org/10.1111/eva.12195 SN - 1752-4571 VL - 7 IS - 9 SP - 1056 EP - 1067 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wiesner, Kerstin R. A1 - Loxdale, Hugh D. A1 - Köhler, Günter A1 - Schneider, Anja R. R. A1 - Tiedemann, Ralph A1 - Weisser, Wolfgang W. T1 - Patterns of local and regional genetic structuring in the meadow grasshopper, Chorthippus parallelus (Orthoptera: Acrididae), in Central Germany revealed using microsatellite markers JF - Biological journal of the Linnean Society : a journal of evolution N2 - The meadow grasshopper, Chorthippus parallelus (Zetterstedt), is common and widespread in Central Europe, with a low dispersal range per generation. A population study in Central Germany (Frankenwald and Thuringer Schiefergebirge) showed strong interpopulation differences in abundance and individual fitness. We examined genetic variability using microsatellite markers within and between 22 populations in a short-to long-distance sampling (19 populations, Frankenwald, Schiefergebirge, as well as a southern transect), and in the Erzgebirge region (three populations), with the latter aiming to check for effects as a result of historical forest cover. Of the 671 C. parallelus captured, none was macropterous (functionally winged). All populations showed a high level of expected and observed heterozygosity (mean 0.80-0.90 and 0.60-0.75, respectively), whereas there was evidence of inbreeding (F(IS) values all positive). Allelic richness for all locus-population combinations was high (mean 9.3-11.2), whereas alleles per locus ranged from 15-62. At a local level, genic and genotypic differences were significant. Pairwise F(ST) values were in the range 0.00-0.04, indicating little interpopulation genetic differentiation. Similarly, the calculated gene flow was very high, based on the respective F(ST) (19.5) and using private alleles (7.7). A Neighbour-joining tree using Nei's D(A) and principal coordinate analysis separated two populations that were collected in the Erzgebirge region. Populations from this region may have escaped the effects of the historical forest cover. The visualization of the spatial arrangement of genotypes revealed one geographical barrier to gene flow in the short-distance sampling. KW - adaptation KW - gene flow KW - diversity KW - landscape structure KW - wing polyphenism Y1 - 2011 U6 - https://doi.org/10.1111/j.1095-8312.2011.01698.x SN - 0024-4066 VL - 103 IS - 4 SP - 875 EP - 890 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Breitkopf, Hendrik A1 - Schlüter, P. M. A1 - Xu, S. A1 - Schiestl, Florian P. A1 - Cozzolino, S. A1 - Scopece, G. T1 - Pollinator shifts between Ophrys sphegodes populations: might adaptation to different pollinators drive population divergence? JF - Journal of evolutionary biology N2 - Local adaptation to different pollinators is considered one of the possible initial stages of ecological speciation as reproductive isolation is a by-product of the divergence in pollination systems. However, pollinator-mediated divergent selection will not necessarily result in complete reproductive isolation, because incipient speciation is often overcome by gene flow. We investigated the potential of pollinator shift in the sexually deceptive orchids Ophrys sphegodes and Ophrys exaltata and compared the levels of floral isolation vs. genetic distance among populations with contrasting predominant pollinators. We analysed floral hydrocarbons as a proxy for floral divergence between populations. Floral adoption of pollinators and their fidelity was tested using pollinator choice experiments. Interpopulation gene flow and population differentiation levels were estimated using AFLP markers. The Tyrrhenian O.sphegodes population preferentially attracted the pollinator bee Andrena bimaculata, whereas the Adriatic O.sphegodes population exclusively attracted A.nigroaenea. Significant differences in scent component proportions were identified in O.sphegodes populations that attracted different preferred pollinators. High interpopulation gene flow was detected, but populations were genetically structured at species level. The high interpopulation gene flow levels independent of preferred pollinators suggest that local adaptation to different pollinators has not (yet) generated detectable genome-wide separation. Alternatively, despite extensive gene flow, few genes underlying floral isolation remain differentiated as a consequence of divergent selection. Different pollination ecotypes in O.sphegodes might represent a local selective response imposed by temporal variation in a geographical mosaic of pollinators as a consequence of the frequent disturbance regimes typical of Ophrys habitats. KW - adaptation KW - ecotypes KW - floral scent KW - gene flow KW - Ophrys KW - orchids KW - pollinator shift KW - sexual deception KW - speciation Y1 - 2013 U6 - https://doi.org/10.1111/jeb.12216 SN - 1010-061X SN - 1420-9101 VL - 26 IS - 10 SP - 2197 EP - 2208 PB - Wiley-Blackwell CY - Hoboken ER -