TY - JOUR A1 - Koc, A. A1 - Reinhardt, M. A1 - von Reppert, Alexander A1 - Rössle, Matthias A1 - Leitenberger, Wolfram A1 - Gleich, M. A1 - Weinelt, M. A1 - Zamponi, Flavio A1 - Bargheer, Matias T1 - Grueneisen-approach for the experimental determination of transient spin and phonon energies from ultrafast x-ray diffraction data: gadolinium JF - Journal of physics : Condensed matter N2 - We study gadolinium thin films as a model system for ferromagnets with negative thermal expansion. Ultrashort laser pulses heat up the electronic subsystem and we follow the transient strain via ultrafast x-ray diffraction. In terms of a simple Grueneisen approach, the strain is decomposed into two contributions proportional to the thermal energy of spin and phonon subsystems. Our analysis reveals that upon femtosecond laser excitation, phonons and spins can be driven out of thermal equilibrium for several nanoseconds. KW - ultrafast KW - x-ray diffraction KW - magnetostriction KW - nonequilibrium KW - spin KW - phonon KW - rare earth Y1 - 2017 U6 - https://doi.org/10.1088/1361-648X/aa7187 SN - 0953-8984 SN - 1361-648X VL - 29 SP - 5884 EP - 5891 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sander, Mathias A1 - Koc, A. A1 - Kwamen, C. T. A1 - Michaels, H. A1 - von Reppert, Alexander A1 - Pudell, Jan-Etienne A1 - Zamponi, Flavio A1 - Bargheer, Matias A1 - Sellmann, J. A1 - Schwarzkopf, J. A1 - Gaal, P. T1 - Characterization of an ultrafast Bragg-Switch for shortening hard x-ray pulses JF - Journal of applied physics N2 - We present a nanostructured device that functions as photoacoustic hard x-ray switch. The device is triggered by femtosecond laser pulses and allows for temporal gating of hard x-rays on picosecond (ps) timescales. It may be used for pulse picking or even pulse shortening in 3rd generation synchrotron sources. Previous approaches mainly suffered from insufficient switching contrasts due to excitation-induced thermal distortions. We present a new approach where thermal distortions are spatially separated from the functional switching layers in the structure. Our measurements yield a switching contrast of 14, which is sufficient for efficient hard x-ray pulse shortening. The optimized structure also allows for utilizing the switch at high repetition rates of up to 208 kHz. Published by AIP Publishing. Y1 - 2016 U6 - https://doi.org/10.1063/1.4967835 SN - 0021-8979 SN - 1089-7550 VL - 120 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - von Reppert, Alexander A1 - Puddell, J. A1 - Koc, A. A1 - Reinhardt, M. A1 - Leitenberger, Wolfram A1 - Dumesnil, K. A1 - Zamponi, Flavio A1 - Bargheer, Matias T1 - Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet JF - Structural dynamics N2 - We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the Néel temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost. Y1 - 2016 U6 - https://doi.org/10.1063/1.4961253 SN - 2329-7778 VL - 3 PB - AIP Publishing LLC CY - Melville, NY ER - TY - JOUR A1 - von Reppert, Alexander A1 - Pudell, Jan-Etienne A1 - Koc, A. A1 - Reinhardt, M. A1 - Leitenberger, Wolfram A1 - Dumesnil, K. A1 - Zamponi, Flavio A1 - Bargheer, Matias T1 - Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet JF - Structural dynamics N2 - We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the Neel temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost. (C) 2016 Author(s). Y1 - 2016 U6 - https://doi.org/10.1063/1.4961253 SN - 2329-7778 VL - 3 PB - American Institute of Physics CY - Melville ER -