TY - JOUR A1 - Feldmann, Johannes A1 - Levermann, Anders T1 - Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades' enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner-Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia. KW - West Antarctic Ice Sheet KW - sea-level rise KW - tipping point KW - instability KW - marine ice-sheet instability Y1 - 2015 U6 - https://doi.org/10.1073/pnas.1512482112 SN - 0027-8424 VL - 112 IS - 46 SP - 14191 EP - 14196 PB - National Acad. of Sciences CY - Washington ER -