TY - JOUR A1 - Mishurova, Tatiana A1 - Stegemann, Robert A1 - Lyamkin, Viktor A1 - Cabeza, Sandra A1 - Evsevleev, Sergei A1 - Pelkner, Matthias A1 - Bruno, Giovanni T1 - Subsurface and bulk residual stress analysis of S235JRC+C Steel TIG weld by diffraction and magnetic stray field measurements JF - Experimental mechanics : an international journal of the Society for Experimental Mechanics N2 - Background Due to physical coupling between mechanical stress and magnetization in ferromagnetic materials, it is assumed in the literature that the distribution of the magnetic stray field corresponds to the internal (residual) stress of the specimen. The correlation is, however, not trivial, since the magnetic stray field is also influenced by the microstructure and the geometry of component. The understanding of the correlation between residual stress and magnetic stray field could help to evaluate the integrity of welded components. Objective This study aims at understanding the possible correlation of subsurface and bulk residual stress with magnetic stray field in a low carbon steel weld. Methods The residual stress was determined by synchrotron X-ray diffraction (SXRD, subsurface region) and by neutron diffraction (ND, bulk region). SXRD possesses a higher spatial resolution than ND. Magnetic stray fields were mapped by utilizing high-spatial-resolution giant magneto resistance (GMR) sensors. Results The subsurface residual stress overall correlates better with the magnetic stray field distribution than the bulk stress. This correlation is especially visible in the regions outside the heat affected zone, where the influence of the microstructural features is less pronounced but steep residual stress gradients are present. Conclusions It was demonstrated that the localized stray field sources without any obvious microstructural variations are associated with steep stress gradients. The good correlation between subsurface residual stress and magnetic signal indicates that the source of the magnetic stray fields is to be found in the range of the penetration depth of the SXRD measurements. KW - residual stress KW - magnetic stray field KW - synchrotron X-ray diffraction KW - neutron diffraction KW - TIG-welding Y1 - 2022 U6 - https://doi.org/10.1007/s11340-022-00841-x SN - 0014-4851 SN - 1741-2765 VL - 62 IS - 6 SP - 1017 EP - 1025 PB - Springer CY - New York ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Serrano-Munoz, Itziar A1 - Fritsch, Tobias A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Diffraction-based residual stress characterization in laser additive manufacturing of metals JF - Metals : open access journal N2 - Laser-based additive manufacturing methods allow the production of complex metal structures within a single manufacturing step. However, the localized heat input and the layer-wise manufacturing manner give rise to large thermal gradients. Therefore, large internal stress (IS) during the process (and consequently residual stress (RS) at the end of production) is generated within the parts. This IS or RS can either lead to distortion or cracking during fabrication or in-service part failure, respectively. With this in view, the knowledge on the magnitude and spatial distribution of RS is important to develop strategies for its mitigation. Specifically, diffraction-based methods allow the spatial resolved determination of RS in a non-destructive fashion. In this review, common diffraction-based methods to determine RS in laser-based additive manufactured parts are presented. In fact, the unique microstructures and textures associated to laser-based additive manufacturing processes pose metrological challenges. Based on the literature review, it is recommended to (a) use mechanically relaxed samples measured in several orientations as appropriate strain-free lattice spacing, instead of powder, (b) consider that an appropriate grain-interaction model to calculate diffraction-elastic constants is both material- and texture-dependent and may differ from the conventionally manufactured variant. Further metrological challenges are critically reviewed and future demands in this research field are discussed. KW - laser-based additive manufacturing KW - residual stress analysis KW - X-ray and KW - neutron diffraction KW - diffraction-elastic constants KW - strain-free lattice KW - spacing Y1 - 2021 U6 - https://doi.org/10.3390/met11111830 SN - 2075-4701 VL - 11 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Thiede, Tobias A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - Residual Stress in Selective Laser Melted Inconel 718 BT - Influence of the Removal from Base Plate and Deposition Hatch Length JF - Materials performance and characterization N2 - The residual stress distribution in IN718 elongated prisms produced by selective laser melting was studied by means of neutron (bulk) and laboratory X-ray (surface) diffraction. Two deposition hatch lengths were considered. A horizontal plane near the top surface (perpendicular to the building direction) and a vertical plane near the lateral surface (parallel to the building direction) were investigated. Samples both in as-built (AB) condition and removed from the base plate (RE) were characterized. While surface stress fields seem constant for the AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e., with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the base plate. KW - residual stress KW - IN718 KW - neutron diffraction KW - laboratory x-ray diffraction KW - additive manufacturing KW - selective laser melting KW - coordinate measurement machine Y1 - 2018 U6 - https://doi.org/10.1520/MPC20170119 SN - 2379-1365 SN - 2165-3992 VL - 7 IS - 4 SP - 717 EP - 735 PB - American Society for Testing and Materials CY - West Conshohocken ER - TY - JOUR A1 - Bruno, Giovanni A1 - Vogel, Sven C. T1 - Simultaneous determination of high-temperature crystal structure and texture of synthetic porous cordierite JF - Journal of applied crystallography N2 - The evolution of the crystal structure and crystallographic texture of porous synthetic cordierite was studied by in situ high-temperature neutron diffraction up to 1373 K, providing the first in situ high-temperature texture measurement of this technologically important material. It was observed that the crystal texture slightly weakens with increasing temperature, concurrently with subtle changes in the crystal structure. These changes are in agreement with previous work, leading the authors to the conclusion that high-temperature neutron diffraction allows reliable crystallographic characterization of materials with moderate texture. It was also observed that structural changes occur at about the glass transition temperature of the cordierite glass (between 973 and 1073 K). Crystal structure refinements were conducted with and without quantitative texture analysis being part of the Rietveld refinement, and a critical comparison of the results is presented, contributing to the sparse body of literature on combined texture and crystal structure refinements. KW - synthetic extruded cordierite KW - crystal texture KW - high temperature KW - atomic distances KW - atomic displacement parameters KW - neutron diffraction Y1 - 2017 U6 - https://doi.org/10.1107/S160057671700406X SN - 1600-5767 VL - 50 SP - 749 EP - 762 PB - International Union of Crystallography CY - Chester ER -