TY - JOUR A1 - Horn, Juliane A1 - Becher, Matthias A. A1 - Johst, Karin A1 - Kennedy, Peter J. A1 - Osborne, Juliet L. A1 - Radchuk, Viktoriia A1 - Grimm, Volker T1 - Honey bee colony performance affected by crop diversity and farmland structure BT - a modeling framework JF - Ecological applications N2 - Forage availability has been suggested as one driver of the observed decline in honey bees. However, little is known about the effects of its spatiotemporal variation on colony success. We present a modeling framework for assessing honey bee colony viability in cropping systems. Based on two real farmland structures, we developed a landscape generator to design cropping systems varying in crop species identity, diversity, and relative abundance. The landscape scenarios generated were evaluated using the existing honey bee colony model BEEHAVE, which links foraging to in-hive dynamics. We thereby explored how different cropping systems determine spatiotemporal forage availability and, in turn, honey bee colony viability (e.g., time to extinction, TTE) and resilience (indicated by, e.g., brood mortality). To assess overall colony viability, we developed metrics,P(H)andP(P,)which quantified how much nectar and pollen provided by a cropping system per year was converted into a colony's adult worker population. Both crop species identity and diversity determined the temporal continuity in nectar and pollen supply and thus colony viability. Overall farmland structure and relative crop abundance were less important, but details mattered. For monocultures and for four-crop species systems composed of cereals, oilseed rape, maize, and sunflower,P(H)andP(P)were below the viability threshold. Such cropping systems showed frequent, badly timed, and prolonged forage gaps leading to detrimental cascading effects on life stages and in-hive work force, which critically reduced colony resilience. Four-crop systems composed of rye-grass-dandelion pasture, trefoil-grass pasture, sunflower, and phacelia ensured continuous nectar and pollen supply resulting in TTE > 5 yr, andP(H)(269.5 kg) andP(P)(108 kg) being above viability thresholds for 5 yr. Overall, trefoil-grass pasture, oilseed rape, buckwheat, and phacelia improved the temporal continuity in forage supply and colony's viability. Our results are hypothetical as they are obtained from simplified landscape settings, but they nevertheless match empirical observations, in particular the viability threshold. Our framework can be used to assess the effects of cropping systems on honey bee viability and to develop land-use strategies that help maintain pollination services by avoiding prolonged and badly timed forage gaps. KW - apis mellifera KW - BEEHAVE KW - colony viability KW - crop diversity KW - cropping system KW - decline KW - forage availability KW - forage gaps KW - honey bees KW - landscape generator KW - modeling Y1 - 2020 U6 - https://doi.org/10.1002/eap.2216 SN - 1939-5582 SN - 1051-0761 VL - 31 IS - 1 SP - 1 EP - 22 PB - Wiley Periodicals LLC CY - Washington DC ER - TY - JOUR A1 - Abramova, Olga A1 - Batzel, Katharina A1 - Modesti, Daniela T1 - Collective response to the health crisis among German Twitter users BT - a structural topic modeling approach JF - International Journal of Information Management Data Insights N2 - We used structural topic modeling to analyze over 800,000 German tweets about COVID-19 to answer the questions: What patterns emerge in tweets as a response to a health crisis? And how do topics discussed change over time? The study leans on the goals associated with the health information seeking (GAINS) model, discerning whether a post aims at tackling and eliminating the problem (i.e., problem-focused) or managing the emotions (i.e., emotion-focused); whether it strives to maximize positive outcomes (promotion focus) or to minimize negative outcomes (prevention focus). The findings indicate four clusters salient in public reactions: 1) “Understanding” (problem-promotion); 2) “Action planning” (problem-prevention); 3) “Hope” (emotion-promotion) and 4) “Reassurance” (emotion-prevention). Public communication is volatile over time, and a shift is evidenced from self-centered to community-centered topics within 4.5 weeks. Our study illustrates social media text mining's potential to quickly and efficiently extract public opinions and reactions. Monitoring fears and trending topics enable policymakers to rapidly respond to deviant behavior, like resistive attitudes toward containment measures or deteriorating physical health. Healthcare workers can use the insights to provide mental health services for battling anxiety or extensive loneliness from staying home. KW - social media KW - Twitter KW - modeling KW - regulatory focus theory KW - crisis management KW - text mining Y1 - 2022 U6 - https://doi.org/10.1016/j.jjimei.2022.100126 SN - 2667-0968 VL - 2 IS - 2 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Omarova, Zhansaya A1 - Yerezhep, Darkhan A1 - Aldiyarov, Abdurakhman A1 - Tokmoldin, Nurlan T1 - In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells JF - Crystals N2 - Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95%, FF = 84.05%, V-OC = 1.02 V and J(SC) = 32.60 mA/cm(2), providing optimal performance and enhanced resistance to defects. KW - perovskite solar cells KW - CH3NH3SnI3 KW - SCAPS-1D KW - modeling KW - HTL Y1 - 2022 U6 - https://doi.org/10.3390/cryst12050699 SN - 2073-4352 VL - 12 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Heckenbach, Esther Lina A1 - Brune, Sascha A1 - Glerum, Anne C. A1 - Bott, Judith T1 - Is there a speed limit for the thermal steady-state assumption in continental rifts? JF - Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences N2 - The lithosphere is often assumed to reside in a thermal steady-state when quantitatively describing the temperature distribution in continental interiors and sedimentary basins, but also at active plate boundaries. Here, we investigate the applicability limit of this assumption at slowly deforming continental rifts. To this aim, we assess the tectonic thermal imprint in numerical experiments that cover a range of realistic rift configurations. For each model scenario, the deviation from thermal equilibrium is evaluated. This is done by comparing the transient temperature field of every model to a corresponding steady-state model with an identical structural configuration. We find that the validity of the thermal steady-state assumption strongly depends on rift type, divergence velocity, sampling location, and depth within the rift. Maximum differences between transient and steady-state models occur in narrow rifts, at the rift sides, and if the extension rate exceeds 0.5-2 mm/a. Wide rifts, however, reside close to thermal steady-state even for high extension velocities. The transient imprint of rifting appears to be overall negligible for shallow isotherms with a temperature less than 100 degrees C. Contrarily, a steady-state treatment of deep crustal isotherms leads to an underestimation of crustal temperatures, especially for narrow rift settings. Thus, not only relatively fast rifts like the Gulf of Corinth, Red Sea, and Main Ethiopian Rift, but even slow rifts like the Kenya Rift, Rhine Graben, and Rio Grande Rift must be expected to feature a pronounced transient component in the temperature field and to therefore violate the thermal steady-state assumption for deeper crustal isotherms. KW - basin analysis KW - geodynamics KW - numerical modeling KW - rifting KW - thermal KW - modeling Y1 - 2021 U6 - https://doi.org/10.1029/2020GC009577 SN - 1525-2027 VL - 22 IS - 3 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Natho, Stephanie A1 - Tschikof, Martin A1 - Bondar-Kunze, Elisabeth A1 - Hein, Thomas T1 - Modeling the effect of enhanced lateral connectivity on nutrient retention capacity in large river floodplains BT - how much connected floodplain do we need? JF - Frontiers in Environmental Science N2 - Floodplains have been degraded in Central Europe for centuries, resulting in less dynamic and less diverse ecosystems than in the past. They provide essential ecosystem services like nutrient retention to improve overall water quality and thus fulfill naturally what EU legislation demands, but this service is impaired by reduced connectivity patterns. Along the second-longest river in Europe, the Danube, restoration measures have been carried out and are planned for the near future in the Austrian Danube Floodplain National Park in accordance with navigation purposes. We investigated nutrient retention capacity in seven currently differently connected side arms and the effects of proposed restoration measures using two complementary modeling approaches. We modeled nutrient retention capacity in two scenarios considering different hydrological conditions, as well as the consequences of planned restoration measures for side arm connectivity. With existing monitoring data on hydrology, nitrate, and total phosphorus concentrations for three side arms, we applied a statistical model and compared these results to a semi-empirical retention model. The latter was originally developed for larger scales, based on transferable causalities of retention processes and set up for this floodplain with publicly available data. Both model outcomes are in a comparable range for NO3-N (77-198 kg ha(-1)yr(-1)) and TP (1.4-5.7 kg ha(-1)yr(-1)) retention and agree in calculating higher retention in floodplains, where reconnection allows more frequent inundation events. However, the differences in the model results are significant for specific aspects especially during high flows, where the semi-empirical model complements the statistical model. On the other hand, the statistical model complements the semi-empirical model when taking into account nutrient retention at times of no connection between the remaining water bodies left in the floodplain. Overall, both models show clearly that nutrient retention in the Danube floodplains can be enhanced by restoring lateral hydrological reconnection and, for all planned measures, a positive effect on the overall water quality of the Danube River is expected. Still, a frequently hydrologically connected stretch of national park is insufficient to improve the water quality of the whole Upper Danube, and more functional floodplains are required. KW - floodplain KW - lateral hydrological connectivity KW - Danube KW - restoration KW - reconnection KW - inundation KW - nutrient retention KW - modeling Y1 - 2020 U6 - https://doi.org/10.3389/fenvs.2020.00074 SN - 2296-665X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Richter, Gudrun A1 - Hainzl, Sebastian A1 - Dahm, Torsten A1 - Zöller, Gert T1 - Stress-based, statistical modeling of the induced seismicity at the Groningen gas field BT - the Netherlands JF - Environmental earth sciences N2 - Groningen is the largest onshore gas field under production in Europe. The pressure depletion of the gas field started in 1963. In 1991, the first induced micro-earthquakes have been located at reservoir level with increasing rates in the following decades. Most of these events are of magnitude less than 2.0 and cannot be felt. However, maximum observed magnitudes continuously increased over the years until the largest, significant event with ML=3.6 was recorded in 2014, which finally led to the decision to reduce the production. This causal sequence displays the crucial role of understanding and modeling the relation between production and induced seismicity for economic planing and hazard assessment. Here we test whether the induced seismicity related to gas exploration can be modeled by the statistical response of fault networks with rate-and-state-dependent frictional behavior. We use the long and complete local seismic catalog and additionally detailed information on production-induced changes at the reservoir level to test different seismicity models. Both the changes of the fluid pressure and of the reservoir compaction are tested as input to approximate the Coulomb stress changes. We find that the rate-and-state model with a constant tectonic background seismicity rate can reproduce the observed long delay of the seismicity onset. In contrast, so-called Coulomb failure models with instantaneous earthquake nucleation need to assume that all faults are initially far from a critical state of stress to explain the delay. Our rate-and-state model based on the fluid pore pressure fits the spatiotemporal pattern of the seismicity best, where the fit further improves by taking the fault density and orientation into account. Despite its simplicity with only three free parameters, the rate-and-state model can reproduce the main statistical features of the observed activity. KW - induced seismicity KW - modeling KW - statistical seismology KW - forecast Y1 - 2020 U6 - https://doi.org/10.1007/s12665-020-08941-4 SN - 1866-6280 SN - 1866-6299 VL - 79 IS - 11 PB - Springer CY - New York ER - TY - JOUR A1 - Ayzel, Georgy T1 - Deep neural networks in hydrology BT - the new generation of universal and efficient models BT - новое поколение универсальных и эффективных моделей JF - Vestnik of Saint Petersburg University. Earth Sciences N2 - For around a decade, deep learning - the sub-field of machine learning that refers to artificial neural networks comprised of many computational layers - modifies the landscape of statistical model development in many research areas, such as image classification, machine translation, and speech recognition. Geoscientific disciplines in general and the field of hydrology in particular, also do not stand aside from this movement. Recently, the proliferation of modern deep learning-based techniques and methods has been actively gaining popularity for solving a wide range of hydrological problems: modeling and forecasting of river runoff, hydrological model parameters regionalization, assessment of available water resources. identification of the main drivers of the recent change in water balance components. This growing popularity of deep neural networks is primarily due to their high universality and efficiency. The presented qualities, together with the rapidly growing amount of accumulated environmental information, as well as increasing availability of computing facilities and resources, allow us to speak about deep neural networks as a new generation of mathematical models designed to, if not to replace existing solutions, but significantly enrich the field of geophysical processes modeling. This paper provides a brief overview of the current state of the field of development and application of deep neural networks in hydrology. Also in the following study, the qualitative long-term forecast regarding the development of deep learning technology for managing the corresponding hydrological modeling challenges is provided based on the use of "Gartner Hype Curve", which in the general details describes a life cycle of modern technologies. N2 - В течение последнего десятилетия глубокое обучение - область машинного обучения, относящаяся к искусственным нейронным сетям, состоящим из множества вычислительных слоев, - изменяет ландшафт развития статистических моделей во многих областях исследований, таких как классификация изображений, машинный перевод, распознавание речи. Географические науки, а также входящая в их состав область исследования гидрологии суши, не стоят в стороне от этого движения. В последнее время применение современных технологий и методов глубокого обучения активно набирает популярность для решения широкого спектра гидрологических задач: моделирования и прогнозирования речного стока, районирования модельных параметров, оценки располагаемых водных ресурсов, идентификации факторов, влияющих на современные изменения водного режима. Такой рост популярности глубоких нейронных сетей продиктован прежде всего их высокой универсальностью и эффективностью. Представленные качества в совокупности с быстрорастущим количеством накопленной информации о состоянии окружающей среды, а также ростом доступности вычислительных средств и ресурсов, позволяют говорить о глубоких нейронных сетях как о новом поколении математических моделей, призванных если не заменить существующие решения, то значительно обогатить область моделирования геофизических процессов. В данной работе представлен краткий обзор текущего состояния области разработки и применения глубоких нейронных сетей в гидрологии. Также в работе предложен качественный долгосрочный прогноз развития технологии глубокого обучения для решения задач гидрологического моделирования на основе использования «кривой ажиотажа Гартнера», в общих чертах описывающей жизненный цикл современных технологий. T2 - Глубокие нейронные сети в гидрологии KW - deep neural networks KW - deep learning KW - machine learning KW - hydrology KW - modeling KW - глубокие нейронные сети KW - глубокое обучение KW - машинное обучение KW - гидрология KW - моделирование Y1 - 2021 U6 - https://doi.org/10.21638/spbu07.2021.101 SN - 2541-9668 SN - 2587-585X VL - 66 IS - 1 SP - 5 EP - 18 PB - Univ. Press CY - St. Petersburg ER - TY - JOUR A1 - Mohr, Christian Heinrich A1 - Manga, Michael A1 - Wald, David T1 - Stronger peak ground motion, beyond the threshold to initiate a response, does not lead to larger stream discharge responses to earthquakes JF - Geophysical research letters N2 - The impressive number of stream gauges in Chile, combined with a suite of past and recent large earthquakes, makes Chile a unique natural laboratory to study several streams that recorded responses to multiple seismic events. We document changes in discharge in eight streams in Chile following two or more large earthquakes. In all cases, discharge increases. Changes in discharge occur for peak ground velocities greater than about 7-11cm/s. Above that threshold, the magnitude of both the increase in discharge and the total excess water do not increase with increasing peak ground velocities. While these observations are consistent with previous work in California, they conflict with lab experiments that show that the magnitude of permeability changes increases with increasing amplitude of ground motion. Instead, our study suggests that streamflow responses are binary. Plain Language Summary Earthquakes deform and shake the surface and the ground below. These changes may affect groundwater flows by increasing the permeability along newly formed cracks and/or clearing clogged pores. As a result, groundwater flow may substantially increase after earthquakes and remain elevated for several months. Here we document streamflow anomalies following multiple high magnitude earthquakes in multiple streams in one of the most earthquake prone regions worldwide, Chile. We take advantage of the dense monitoring network in Chile that recorded streamflow since the 1940s. We show that once a critical ground motion is exceeded, streamflow responses to earthquakes can be expected. KW - earthquake KW - streamflow KW - shaking KW - Chile KW - modeling Y1 - 2018 U6 - https://doi.org/10.1029/2018GL078621 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 13 SP - 6523 EP - 6531 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Francke, Till A1 - Baroni, Gabriele A1 - Brosinsky, Arlena A1 - Foerster, Saskia A1 - Lopez-Tarazon, José Andrés A1 - Sommerer, Erik A1 - Bronstert, Axel T1 - What Did Really Improve Our Mesoscale Hydrological Model? BT - a Multidimensional Analysis Based on Real Observations JF - Water resources research N2 - Modelers can improve a model by addressing the causes for the model errors (data errors and structural errors). This leads to implementing model enhancements (MEs), for example, meteorological data based on more monitoring stations, improved calibration data, and/or modifications in process formulations. However, deciding on which MEs to implement remains a matter of expert knowledge. After implementing multiple MEs, any improvement in model performance is not easily attributed, especially when considering different objectives or aspects of this improvement (e.g., better dynamics vs. reduced bias). We present an approach for comparing the effect of multiple MEs based on real observations and considering multiple objectives (MMEMO). A stepwise selection approach and structured plots help to address the multidimensionality of the problem. Tailored analyses allow a differentiated view on the effect of MEs and their interactions. MMEMO is applied to a case study employing the mesoscale hydro-sedimentological model WASA-SED for the Mediterranean-mountainous Isabena catchment, northeast Spain. The investigated seven MEs show diverse effects: some MEs (e.g., rainfall data) cause improvements for most objectives, while other MEs (e.g., land use data) only affect a few objectives or even decrease model performance. Interaction of MEs was observed for roughly half of the MEs, confirming the need to address them in the analysis. Calibration and increasing the temporal resolution showed by far stronger impact than any of the other MEs. The proposed framework can be adopted in other studies to analyze the effect of MEs and, thus, facilitate the identification and implementation of the most promising MEs for comparable cases. KW - modeling KW - sensitivity analyses KW - model enhancement KW - sediment Y1 - 2018 U6 - https://doi.org/10.1029/2018WR022813 SN - 0043-1397 SN - 1944-7973 VL - 54 IS - 11 SP - 8594 EP - 8612 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Wang, Dedong A1 - Shprits, Yuri Y. T1 - On How High-Latitude Chorus Waves Tip the Balance Between Acceleration and Loss of Relativistic Electrons JF - Geophysical research letters N2 - Modeling and observations have shown that energy diffusion by chorus waves is an important source of acceleration of electrons to relativistic energies. By performing long-term simulations using the three-dimensional Versatile Electron Radiation Belt code, in this study, we test how the latitudinal dependence of chorus waves can affect the dynamics of the radiation belt electrons. Results show that the variability of chorus waves at high latitudes is critical for modeling of megaelectron volt (MeV) electrons. We show that, depending on the latitudinal distribution of chorus waves under different geomagnetic conditions, they cannot only produce a net acceleration but also a net loss of MeV electrons. Decrease in high-latitude chorus waves can tip the balance between acceleration and loss toward acceleration, or alternatively, the increase in high-latitude waves can result in a net loss of MeV electrons. Variations in high-latitude chorus may account for some of the variability of MeV electrons. KW - radiation belts KW - chorus waves KW - high latitude KW - acceleration KW - loss KW - modeling Y1 - 2019 U6 - https://doi.org/10.1029/2019GL082681 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 14 SP - 7945 EP - 7954 PB - American Geophysical Union CY - Washington ER -