TY - JOUR A1 - Perez-Cornago, Aurora A1 - Crowe, Francesca L. A1 - Appleby, Paul N. A1 - Bradbury, Kathryn E. A1 - Wood, Angela M. A1 - Jakobsen, Marianne Uhre A1 - Johnson, Laura A1 - Sacerdote, Carlotta A1 - Steur, Marinka A1 - Weiderpass, Elisabete A1 - Wurtz, Anne Mette L. A1 - Kuhn, Tilman A1 - Katzke, Verena A1 - Trichopoulou, Antonia A1 - Karakatsani, Anna A1 - La Vecchia, Carlo A1 - Masala, Giovanna A1 - Tumino, Rosario A1 - Panico, Salvatore A1 - Sluijs, Ivonne A1 - Skeie, Guri A1 - Imaz, Liher A1 - Petrova, Dafina A1 - Quiros, J. Ramon A1 - Yohar, Sandra Milena Colorado A1 - Jakszyn, Paula A1 - Melander, Olle A1 - Sonestedt, Emily A1 - Andersson, Jonas A1 - Wennberg, Maria A1 - Aune, Dagfinn A1 - Riboli, Elio A1 - Schulze, Matthias Bernd A1 - di Angelantonio, Emanuele A1 - Wareham, Nicholas J. A1 - Danesh, John A1 - Forouhi, Nita G. A1 - Butterworth, Adam S. A1 - Key, Timothy J. T1 - Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort JF - International journal of epidemiology N2 - Background: Epidemiological evidence indicates that diets rich in plant foods are associated with a lower risk of ischaemic heart disease (IHD), but there is sparse information on fruit and vegetable subtypes and sources of dietary fibre. This study examined the associations of major plant foods, their subtypes and dietary fibre with risk of IHD in the European Prospective Investigation into Cancer and Nutrition (EPIC). Methods: We conducted a prospective analysis of 490 311 men and women without a history of myocardial infarction or stroke at recruitment (12.6 years of follow-up, n cases = 8504), in 10 European countries. Dietary intake was assessed using validated questionnaires, calibrated with 24-h recalls. Multivariable Cox regressions were used to estimate hazard ratios (HR) of IHD. Results: There was a lower risk of IHD with a higher intake of fruit and vegetables combined [HR per 200 g/day higher intake 0.94, 95% confidence interval (CI): 0.90-0.99, P-trend = 0.009], and with total fruits (per 100 g/day 0.97, 0.95-1.00, P-trend = 0.021). There was no evidence for a reduced risk for fruit subtypes, except for bananas. Risk was lower with higher intakes of nuts and seeds (per 10 g/day 0.90, 0.82-0.98, Ptrend = 0.020), total fibre (per 10 g/day 0.91, 0.85-0.98, P-trend = 0.015), fruit and vegetable fibre (per 4 g/day 0.95, 0.91-0.99, P-trend = 0.022) and fruit fibre (per 2 g/day 0.97, 0.95-1.00, P-trend = 0.045). No associations were observed between vegetables, vegetables subtypes, legumes, cereals and IHD risk. Conclusions: In this large prospective study, we found some small inverse associations between plant foods and IHD risk, with fruit and vegetables combined being the most strongly inversely associated with risk. Whether these small associations are causal remains unclear. KW - fruit KW - vegetables KW - legumes KW - nuts KW - seeds KW - coronary heart disease Y1 - 2021 U6 - https://doi.org/10.1093/ije/dyaa155 SN - 0300-5771 SN - 1464-3685 VL - 50 IS - 1 SP - 212 EP - 222 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Shahnejat-Bushehri, Sara A1 - Allu, Annapurna Devi A1 - Mehterov, Nikolay A1 - Thirumalaikumar, Venkatesh P. A1 - Alseekh, Saleh A1 - Fernie, Alisdair R. A1 - Mueller-Roeber, Bernd A1 - Balazadeh, Salma T1 - Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato JF - Frontiers in plant science N2 - The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species. KW - Arabidopsis KW - tomato KW - fruit KW - growth KW - transcription factor KW - gibberellic acid KW - brassinosteroid KW - DELLA proteins Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.00214 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Lisso, Janina A1 - Altmann, Thomas A1 - Müssig, Carsten T1 - Metabolic changes in fruits of the tomato d(x) mutant JF - Phytochemistry : an international journal of plant biochemistry KW - Solanum lycopersicum KW - Solanaceae KW - tomato KW - brassinosteroid KW - primary metabolism KW - fruit Y1 - 2006 U6 - https://doi.org/10.1016/j.phytochem.2006.07.008 SN - 0031-9422 VL - 67 IS - 20 SP - 2232 EP - 2238 PB - Elsevier CY - Oxford ER -