TY - JOUR A1 - Quarmby, Andrew A1 - Mönnig, Jamal A1 - Mugele, Hendrik A1 - Henschke, Jakob A1 - Kim, MyoungHwee A1 - Cassel, Michael A1 - Engel, Tilman T1 - Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review JF - Frontiers in Sports and Active Living N2 - Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of “medial collapse”. Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn. KW - achilles tendinopathy KW - biomechanics KW - neuromuscular KW - kinetics KW - electromyography KW - athletes KW - runners KW - kinematics Y1 - 2023 U6 - https://doi.org/10.3389/fspor.2022.1012471 SN - 2624-9367 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Risch, Lucie A1 - Stoll, Josefine A1 - Schomöller, Anne A1 - Engel, Tilman A1 - Mayer, Frank A1 - Cassel, Michael T1 - Intraindividual Doppler Flow Response to Exercise Differs Between Symptomatic and Asymptomatic Achilles Tendons JF - Frontiers in physiology N2 - Objective: This study investigated intraindividual differences of intratendinous blood flow (IBF) in response to running exercise in participants with Achilles tendinopathy. Design: This is a cross-sectional study. Setting: The study was conducted at the University Outpatient Clinic. Participants: Sonographic detectable intratendinous blood flow was examined in symptomatic and contralateral asymptomatic Achilles tendons of 19 participants (42 ± 13 years, 178 ± 10 cm, 76 ± 12 kg, VISA-A 75 ± 16) with clinically diagnosed unilateral Achilles tendinopathy and sonographic evident tendinosis. Intervention: IBF was assessed using Doppler ultrasound “Advanced Dynamic Flow” before (Upre) and 5, 30, 60, and 120 min (U5–U120) after a standardized submaximal constant load run. Main Outcome Measure: IBF was quantified by counting the number (n) of vessels in each tendon. Results: At Upre, IBF was higher in symptomatic compared with asymptomatic tendons [mean 6.3 (95% CI: 2.8–9.9) and 1.7 (0.4–2.9), p < 0.01]. Overall, 63% of symptomatic and 47% of asymptomatic Achilles tendons responded to exercise, whereas 16 and 11% showed persisting IBF and 21 and 42% remained avascular throughout the investigation. At U5, IBF increased in both symptomatic and asymptomatic tendons [difference to baseline: 2.4 (0.3–4.5) and 0.9 (0.5–1.4), p = 0.05]. At U30 to U120, IBF was still increased in symptomatic but not in asymptomatic tendons [mean difference to baseline: 1.9 (0.8–2.9) and 0.1 (-0.9 to 1.2), p < 0.01]. Conclusion: Irrespective of pathology, 47–63% of Achilles tendons responded to exercise with an immediate acute physiological IBF increase by an average of one to two vessels (“responders”). A higher amount of baseline IBF (approximately five vessels) and a prolonged exercise-induced IBF response found in symptomatic ATs indicate a pain-associated altered intratendinous “neovascularization.” KW - achilles tendinopathy KW - tendinosis KW - neovascularization KW - ultrasound KW - advanced dynamic flow KW - sonography Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.617497 SN - 1664-042X VL - 12 SP - 1 EP - 8 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER -