TY - JOUR A1 - Green, Luci M. A1 - Kliem, Bernhard A1 - Wallace, A. J. T1 - Photospheric flux cancellation and associated flux rope formation and eruption JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We study an evolving bipolar active region that exhibits flux cancellation at the internal polarity inversion line, the formation of a soft X-ray sigmoid along the inversion line and a coronal mass ejection. The aim is to investigate the quantity of flux cancellation that is involved in flux rope formation in the time period leading up to the eruption. Methods. The active region is studied using its extreme ultraviolet and soft X-ray emissions as it evolves from a sheared arcade to flux rope configuration. The evolution of the photospheric magnetic field is described and used to estimate how much flux is reconnected into the flux rope. Results. About one third of the active region flux cancels at the internal polarity inversion line in the 2.5 days leading up to the eruption. In this period, the coronal structure evolves from a weakly to a highly sheared arcade and then to a sigmoid that crosses the inversion line in the inverse direction. These properties suggest that a flux rope has formed prior to the eruption. The amount of cancellation implies that up to 60% of the active region flux could be in the body of the flux rope. We point out that only part of the cancellation contributes to the flux in the rope if the arcade is only weakly sheared, as in the first part of the evolution. This reduces the estimated flux in the rope to similar to 30% or less of the active region flux. We suggest that the remaining discrepancy between our estimate and the limiting value of similar to 10% of the active region flux, obtained previously by the flux rope insertion method, results from the incomplete coherence of the flux rope, due to nonuniform cancellation along the polarity inversion line. A hot linear feature is observed in the active region which rises as part of the eruption and then likely traces out the field lines close to the axis of the flux rope. The flux cancellation and changing magnetic connections at one end of this feature suggest that the flux rope reaches coherence by reconnection immediately before and early in the impulsive phase of the associated flare. The sigmoid is destroyed in the eruption but reforms quickly, with the amount of cancellation involved being much smaller than in the course of its original formation. KW - Sun: activity KW - Sun: coronal mass ejections (CMEs) KW - magnetic fields KW - magnetic reconnection KW - Sun: photosphere KW - Sun: magnetic topology Y1 - 2011 U6 - https://doi.org/10.1051/0004-6361/201015146 SN - 0004-6361 VL - 526 IS - 2 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Fuhrmann, Marcel A1 - Seehafer, Norbert A1 - Valori, Gherardo A1 - Wiegelmann, T. T1 - A comparison of preprocessing methods for solar force-free magnetic field extrapolation JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Extrapolations of solar photospheric vector magnetograms into three-dimensional magnetic fields in the chromosphere and corona are usually done under the assumption that the fields are force-free. This condition is violated in the photosphere itself and a thin layer in the lower atmosphere above. The field calculations can be improved by preprocessing the photospheric magnetograms. The intention here is to remove a non-force-free component from the data. Aims. We compare two preprocessing methods presently in use, namely the methods of Wiegelmann et al. (2006, Sol. Phys., 233, 215) and Fuhrmann et al. (2007, A&A, 476, 349). Methods. The two preprocessing methods were applied to a vector magnetogram of the recently observed active region NOAA AR 10 953. We examine the changes in the magnetogram effected by the two preprocessing algorithms. Furthermore, the original magnetogram and the two preprocessed magnetograms were each used as input data for nonlinear force-free field extrapolations by means of two different methods, and we analyze the resulting fields. Results. Both preprocessing methods managed to significantly decrease the magnetic forces and magnetic torques that act through the magnetogram area and that can cause incompatibilities with the assumption of force-freeness in the solution domain. The force and torque decrease is stronger for the Fuhrmann et al. method. Both methods also reduced the amount of small-scale irregularities in the observed photospheric field, which can sharply worsen the quality of the solutions. For the chosen parameter set, the Wiegelmann et al. method led to greater changes in strong-field areas, leaving weak-field areas mostly unchanged, and thus providing an approximation of the magnetic field vector in the chromosphere, while the Fuhrmann et al. method weakly changed the whole magnetogram, thereby better preserving patterns present in the original magnetogram. Both preprocessing methods raised the magnetic energy content of the extrapolated fields to values above the minimum energy, corresponding to the potential field. Also, the fields calculated from the preprocessed magnetograms fulfill the solenoidal condition better than those calculated without preprocessing. KW - Sun: magnetic topology KW - Sun: atmosphere KW - magnetohydrodynamics (MHD) Y1 - 2011 U6 - https://doi.org/10.1051/0004-6361/201015453 SN - 0004-6361 VL - 526 PB - EDP Sciences CY - Les Ulis ER -