TY - JOUR A1 - Shenar, Tomer A1 - Richardson, N. D. A1 - Sablowski, Daniel P. A1 - Hainich, Rainer A1 - Sana, H. A1 - Moffat, A. F. J. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida A1 - Sander, Andreas Alexander Christoph A1 - Tramper, Frank A1 - Langer, Norbert A1 - Bonanos, Alceste Z. A1 - de Mink, Selma E. A1 - Gräfener, G. A1 - Crowther, Paul A1 - Vink, J. S. A1 - Almeida, Leonardo A. A1 - de Koter, A. A1 - Barbá, Rodolfo A1 - Herrero, A. A1 - Ulaczyk, Krzysztof T1 - The tarantula massive binary monitoring BT - II. First SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145 JF - Astronomy and astrophysics : an international weekly journal N2 - We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159 d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300 M-circle dot, making it a candidate for being the most massive star known to date. While the primary is a known late-type, H-rich Wolf-Rayet star (WN6h), the secondary has so far not been unambiguously detected. Using moderate-resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0 : 78 and minimum masses of M-1 sin(3) i approximate to M-2 sin(3) i = 13 +/- 2 M-circle dot, with q = M-2/M-1 = 1.01 +/- 0.07. An analysis of emission excess stemming from a wind-wind collision yields an inclination similar to that obtained from polarimetry (i = 39 +/- 6 degrees). Our analysis thus implies M-1 = 53(-20)(+40) and M2 = 54(-20)(+40) M-circle dot, excluding M-1 > 300 M-circle dot. A detailed comparison with evolution tracks calculated for single and binary stars together with the high eccentricity suggests that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of approximate to 80 M-circle dot and initial masses of M-i,M-1 approximate to 10(5) and M-i,M-2 approximate to 90 M-circle dot, consistent with the upper limits of our derived orbital masses, and would imply an age of approximate to 2.2 Myr. KW - binaries: spectroscopic KW - stars: Wolf-Rayet KW - stars: massive KW - Magellanic Clouds KW - stars: individual: R 145 KW - stars: atmospheres Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629621 SN - 1432-0746 VL - 598 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Ramachandran, Varsha A1 - Hainich, Rainer A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida A1 - Shenar, T. A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias A1 - Gallagher, John S. T1 - Stellar population of the superbubble N206 in the LMC I. Analysis of the Of-type stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant H II region N206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. Aims. We aim to estimate stellar and wind parameters of all OB stars in N206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. Methods. We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. Results. The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. Conclusions. The mechanical energy input from the Of stars alone is comparable to the energy stored in the N206 superbubble as measured from the observed X-ray and H alpha emission. KW - stars: early-type KW - Magellanic Clouds KW - stars: atmospheres KW - stars: winds, outflows KW - stars: mass-loss KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731093 SN - 1432-0746 SN - 0004-6361 VL - 609 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Ramachandran, Varsha A1 - Hamann, Wolf-Rainer A1 - Hainich, Rainer A1 - Oskinova, Lida A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias A1 - Gallagher, John S. T1 - Stellar population of the superbubble N206 in the LMC II. Parameters of the OB and WR stars, and the total massive star feedback JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Clusters or associations of early-type stars are often associated with a "superbubble" of hot gas. The formation of such superbubbles is caused by the feedback from massive stars. The complex N206 in the Large Magellanic Cloud (LMC) exhibits a superbubble and a rich massive star population. Aims. Our goal is to perform quantitative spectral analyses of all massive stars associated with the N206 superbubble in order to determine their stellar and wind parameters. We compare the superbubble energy budget to the stellar energy input and discuss the star formation history of the region. Results. We present the stellar and wind parameters of the OB stars and the two Wolf-Rayet (WR) binaries in the N206 complex. Twelve percent of the sample show Oe/Be type emission lines, although most of them appear to rotate far below critical. We found eight runaway stars based on their radial velocity. The wind-momentum luminosity relation of our OB sample is consistent with the expectations. The Hertzsprung-Russell diagram (HRD) of the OB stars reveals a large age spread (1-30 Myr), suggesting different episodes of star formation in the complex. The youngest stars are concentrated in the inner part of the complex, while the older OB stars are scattered over outer regions. We derived the present day mass function for the entire N206 complex as well as for the cluster NGC2018. The total ionizing photon flux produced by all massive stars in the N206 complex is Q(0) approximate to 5 x 10(50) s(-1), and the mechanical luminosity of their stellar winds amounts to L-mec = 1.7 x 10(38) erg s(-1). Three very massive Of stars are found to dominate the feedback among 164 OB stars in the sample. The two WR winds alone release about as much mechanical luminosity as the whole OB star sample. The cumulative mechanical feedback from all massive stellar winds is comparable to the combined mechanical energy of the supernova explosions that likely occurred in the complex. Accounting also for the WR wind and supernovae, the mechanical input over the last five Myr is approximate to 2.3 x 10(52) erg. Conclusions. The N206 complex in the LMC has undergone star formation episodes since more than 30 Myr ago. From the spectral analyses of its massive star population, we derive a current star formation rate of 2.2 x 10(-3) M-circle dot yr(-1). From the combined input of mechanical energy from all stellar winds, only a minor fraction is emitted in the form of X-rays. The corresponding input accumulated over a long time also exceeds the current energy content of the complex by more than a factor of five. The morphology of the complex suggests a leakage of hot gas from the superbubble. KW - stars: massive KW - Magellanic Clouds KW - stars: winds, outflows KW - Hertzsprung-Russell and C-M diagrams KW - techniques: spectroscopic KW - ISM: bubbles Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201832816 SN - 1432-0746 VL - 615 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Shenar, Tomer A1 - Hainich, Rainer A1 - Todt, Helge Tobias A1 - Moffat, Anthony F. J. A1 - Sander, Andreas Alexander Christoph A1 - Oskinova, Lida A1 - Ramachandran, Varsha A1 - Munoz, M. A1 - Pablo, H. A1 - Sana, Hugues A1 - Hamann, Wolf-Rainer T1 - The shortest-period Wolf-Rayet binary in the small magellanic cloud BT - Part of a high-order multiple system Spectral and orbital analysis of SMC AB 6 JF - Astronomy and astrophysics : an international weekly journal N2 - Context. SMC AB6 is the shortest-period (P = 6.5 d) Wolf-Rayet (WR) binary in the Small Magellanic Cloud. This binary is therefore a key system in the study of binary interaction and formation of WR stars at low metallicity. The WR component in AB6 was previously found to be very luminous (log L = 6.3 [L-circle dot]) compared to its reported orbital mass (approximate to 8 M-circle dot), placing it significantly above the Eddington limit. Aims. Through spectroscopy and orbital analysis of newly acquired optical data taken with the Ultraviolet and Visual Echelle Spectrograph (UVES), we aim to understand the peculiar results reported for this system and explore its evolutionary history. Methods. We measured radial velocities via cross-correlation and performed a spectral analysis using the Potsdam Wolf-Rayet model atmosphere code. The evolution of the system was analyzed using the Binary Population and Spectral Synthesis evolution code. Results. AB6 contains at least four stars. The 6.5 d period WR binary comprises the WR primary (WN3:h, star A) and a rather rapidly rotating (v(eq) = 265 km s(-1)) early O-type companion (O5.5 V, star B). Static N III and N IV emission lines and absorption signatures in He lines suggest the presence of an early-type emission line star (O5.5 I(f), star C). Finally, narrow absorption lines portraying a long-term radial velocity variation show the existence of a fourth star (O7.5 V, star D). Star D appears to form a second 140 d period binary together with a fifth stellar member, which is a B-type dwarf or a black hole. It is not clear that these additional components are bound to the WR binary. We derive a mass ratio of M-O/M-WR = 2.2 +/- 0.1. The WR star is found to be less luminous than previously thought (log L = 5.9 [L-circle dot]) and, adopting M-O = 41 M-circle dot for star B, more massive (M-WR = 18 M-circle dot). Correspondingly, the WR star does not exceed the Eddington limit. We derive the initial masses of M-i,M-WR = 60 M-circle dot and M-i,M-O = 40 M-circle dot and an age of 3.9 Myr for the system. The WR binary likely experienced nonconservative mass transfer in the past supported by the relatively rapid rotation of star B. Conclusions. Our study shows that AB6 is a multiple - probably quintuple - system. This finding resolves the previously reported puzzle of the WR primary exceeding the Eddington limit and suggests that the WR star exchanged mass with its companion in the past. KW - stars: massive KW - binaries: spectroscopic KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - stars: individual: SMC AB 6 KW - stars: atmospheres Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201833006 SN - 1432-0746 SN - 0004-6361 VL - 616 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Ramachandran, Varsha A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida A1 - Gallagher, J. S. A1 - Hainich, Rainer A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias A1 - Fulmer, Leah M. T1 - Testing massive star evolution, star formation history, and feedback at low metallicity BT - Spectroscopic analysis of OB stars in the SMC Wing JF - Astronomy and astrophysics : an international weekly journal N2 - Stars that start their lives with spectral types O and early B are the progenitors of core-collapse supernovae, long gamma-ray bursts, neutron stars, and black holes. These massive stars are the primary sources of stellar feedback in star-forming galaxies. At low metallicities, the properties of massive stars and their evolution are not yet fully explored. Here we report a spectroscopic study of 320 massive stars of spectral types O (23 stars) and B (297 stars) in the Wing of the Small Magellanic Cloud (SMC). The spectra, which we obtained with the ESO Very Large Telescope, were analyzed using state-of-the-art stellar atmosphere models, and the stellar parameters were determined. We find that the stellar winds of our sample stars are generally much weaker than theoretically expected. The stellar rotation rates show broad, tentatively bimodal distributions. The upper Hertzsprung-Russell diagram (HRD) is well populated by the stars of our sample from a specific field in the SMC Wing. A few very luminous O stars are found close to the main sequence, while all other, slightly evolved stars obey a strict luminosity limit. Considering additional massive stars in evolved stages, with published parameters and located all over the SMC, essentially confirms this picture. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with an initial mass below similar to 30 M-circle dot seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, stars with initially more than similar to 30 M-circle dot appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We measured the key parameters of stellar feedback and established the links between the rates of star formation and supernovae. Our study demonstrates that in metal-poor environments stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars. We found indications of the stochastic mode of massive star formation, where the resulting stellar population is fully capable of producing large-scale structures such as the supergiant shell SMC-SGS 1 in the Wing. The low level of feedback in metal-poor stellar populations allows star formation episodes to persist over long timescales. KW - stars: evolution KW - stars: massive KW - stars: mass-loss KW - Magellanic Clouds KW - Hertzsprung-Russell and C-M diagrams KW - techniques: spectroscopic Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935365 SN - 1432-0746 VL - 625 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Shenar, Tomer A1 - Sablowski, D. P. A1 - Hainich, Rainer A1 - Todt, Helge Tobias A1 - Moffat, Anthony F. J. A1 - Oskinova, Lida A1 - Ramachandran, Varsha A1 - Sana, Hugues A1 - Sander, Andreas Alexander Christoph A1 - Schnurr, O. A1 - St-Louis, N. A1 - Vanbeveren, D. A1 - Gotberg, Y. A1 - Hamann, Wolf-Rainer T1 - The Wolf-Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud Spectroscopy, orbital analysis, formation, and evolution JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Massive Wolf-Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core collapse. It is not known whether core He-burning WR stars (classical WR; cWR) form predominantly through wind stripping (w-WR) or binary stripping (b-WR). Whereas spectroscopy of WR binaries has so-far largely been avoided because of its complexity, our study focuses on the 44 WR binaries and binary candidates of the Large Magellanic Cloud (LMC; metallicity Z approximate to 0.5 Z(circle dot)), which were identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Aims. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at subsolar metallicity and constraining the impact of binary interaction in forming these stars. Methods. Spectroscopy was performed using the Potsdam Wolf-Rayet (PoWR) code and cross-correlation techniques. Disentanglement was performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status was interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically homogeneous evolution. Results. Among our sample, 28/44 objects show composite spectra and are analyzed as such. An additional five targets show periodically moving WR primaries but no detected companions (SB1); two (BAT99 99 and 112) are potential WR + compact-object candidates owing to their high X-ray luminosities. We cannot confirm the binary nature of the remaining 11 candidates. About two-thirds of the WN components in binaries are identified as cWR, and one-third as hydrogen-burning WR stars. We establish metallicity-dependent mass-loss recipes, which broadly agree with those recently derived for single WN stars, and in which so-called WN3/O3 stars are clear outliers. We estimate that 45 +/- 30% of the cWR stars in our sample have interacted with a companion via mass transfer. However, only approximate to 12 +/- 7% of the cWR stars in our sample naively appear to have formed purely owing to stripping via a companion (12% b-WR). Assuming that apparently single WR stars truly formed as single stars, this comprises approximate to 4% of the whole LMC WN population, which is about ten times less than expected. No obvious differences in the properties of single and binary WN stars, whose luminosities extend down to log L approximate to 5.2 [L-circle dot], are apparent. With the exception of a few systems (BAT99 19, 49, and 103), the equatorial rotational velocities of the OB-type companions are moderate (v(eq) less than or similar to 250 km s(-1)) and challenge standard formalisms of angular-momentum accretion. For most objects, chemically homogeneous evolution can be rejected for the secondary, but not for the WR progenitor. Conclusions. No obvious dichotomy in the locations of apparently single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models. KW - stars: massive KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - binaries: close KW - binaries: spectroscopic KW - stars: evolution Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935684 SN - 0004-6361 SN - 1432-0746 VL - 627 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Shenar, Tomer A1 - Hainich, Rainer A1 - Todt, Helge Tobias A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer A1 - Moffat, Anthony F. J. A1 - Eldridge, J. J. A1 - Pablo, H. A1 - Oskinova, Lida A1 - Richardson, N. D. T1 - Wolf-Rayet stars in the Small Magellanic Cloud II. Analysis of the binaries JF - American mineralogist : an international journal of earth and planetary materials N2 - Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (M-i greater than or similar to 20 M-circle dot) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims. By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods. The spectral analysis is performed with the PotsdamWolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results. Significant hydrogen mass fractions (0.1 < X-H < 0.4) are detected in all WN components. A comparison with mass-luminosity relations and evolutionary tracks implies that the majority of the WR stars in our sample are not chemically homogeneous. The WR component in the binary AB6 is found to be very luminous (log L approximate to 6.3 [L-circle dot]) given its orbital mass (approximate to 10 M-circle dot), presumably because of observational contamination by a third component. Evolutionary paths derived for our objects suggest that Roche lobe overflow had occurred in most systems, affecting their evolution. However, the implied initial masses (greater than or similar to 60 M-circle dot) are large enough for the primaries to have entered the WR phase, regardless of binary interaction. Conclusions. Together with the results for the putatively single SMC WR stars, our study suggests that the binary evolution channel does not dominate the formation of WR stars at SMC metallicity. KW - stars: massive KW - stars: Wolf-Rayet KW - stars: evolution KW - binaries: close KW - binaries: symbiotic KW - Magellanic Clouds Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527916 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hainich, Rainer A1 - Pasemann, Diana A1 - Todt, Helge Tobias A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer T1 - Wolf-Rayet stars in the Small Magellanic Cloud I. Analysis of the single WN stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10(5.5) to 10(6.1) L-circle dot. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. Conclusions. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past. KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - stars: early-type KW - stars: atmospheres KW - stars: winds, outflows KW - stars: mass-loss Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201526241 SN - 1432-0746 VL - 581 PB - EDP Sciences CY - Les Ulis ER -