TY - JOUR A1 - Mishra, Praveen Kumar A1 - Prasad, Sushma A1 - Anoop, A. A1 - Plessen, Birgit A1 - Jehangir, Arshid A1 - Gaye, Birgit A1 - Menzel, Philip A1 - Weise, Stephan M. A1 - Yousuf, Abdul R. T1 - Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - High resolution isotopic (delta O-18 and delta C-13) investigations on endogenic carbonates (calcite/aragonite) from Tso Moriri Lake, NW Himalaya show dramatic fluctuations during the late glacial and the early Holocene, and a persistent enrichment trend during the late Holocene. Changes in this lake are largely governed by the [input (meltwater + monsoon precipitation)/evaporationj (WE) ratio, also reflected in changes in the carbonate mineralogy with aragonite being formed during periods of lowest I/E. Using new isotopic data on endogenic carbonates in combination with the available data on geochemistry, mineralogy, and reconstructed mean annual precipitation, we demonstrate that the late glacial and early Holocene carbonate delta O-18 variability resulted from fluctuating Indian summer monsoon (ISM) precipitation in NW Himalaya. This region experienced increasing ISM precipitation between ca. 13.1 and 11.7 cal ka and highest ISM precipitation during the early Holocene (11.2-8.5 cal ka). However, during the late Holocene, evaporation was the dominant control on the carbonate delta O-18. Regional comparison of reconstructed hydrological changes from Tso Moriri Lake with other archives from the Asian summer monsoon and westerlies domain shows that the intensified westerly influence that resulted in higher lake levels (after 8 cal ka) in central Asia was not strongly felt in NW Himalaya. (C) 2015 Elsevier B.V. All rights reserved. KW - Carbonates KW - Holocene KW - Indian summer monsoon KW - Isotopes KW - Tso Moriri Lake Y1 - 2015 U6 - https://doi.org/10.1016/j.palaeo.2015.02.031 SN - 0031-0182 SN - 1872-616X VL - 425 SP - 76 EP - 83 PB - Elsevier CY - Amsterdam ER -