TY - JOUR A1 - Gonzalez Manrique, Sergio Javier A1 - Kuckein, Christoph A1 - Collados, M. A1 - Denker, Carsten A1 - Solanki, S. K. A1 - Gomory, P. A1 - Verma, Meetu A1 - Balthasar, H. A1 - Lagg, A. A1 - Diercke, Andrea T1 - Temporal evolution of arch filaments as seen in He I 10 830 angstrom JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 angstrom spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 angstrom triplet. The arch filament expanded in height and extended in length from 13 ' to 21 '. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s(-1). Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s(-1) in the chromosphere. The temporal evolution of He I 10 830 angstrom profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time. KW - Sun: chromosphere KW - Sun: activity KW - methods: observational KW - methods: data analysis KW - techniques: high angular resolution Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201832684 SN - 1432-0746 VL - 617 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Denker, Carsten A1 - Kuckein, Christoph A1 - Verma, Meetu A1 - Manrique Gonzalez, Sergio Javier Gonzalez A1 - Diercke, Andrea A1 - Enke, Harry A1 - Klar, Jochen A1 - Balthasar, Horst A1 - Louis, Rohan E. A1 - Dineva, Ekaterina Ivanova T1 - High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope-A Collaborative Research Environment for High-resolution Solar Physics JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times "freezing" the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the "early science" phase with the 1.5 m GREGOR solar telescope (2014–2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR's post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry–Pérot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for "big data" in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures. KW - astronomical databases KW - methods: data analysis KW - Sun: chromosphere KW - Sun: photosphere KW - techniques: image processing KW - techniques: spectroscopic Y1 - 2018 U6 - https://doi.org/10.3847/1538-4365/aab773 SN - 0067-0049 SN - 1538-4365 VL - 236 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER -