TY - JOUR A1 - Fritz, Michael A1 - Unkel, Ingmar A1 - Lenz, Josefine A1 - Gajewski, Konrad A1 - Frenzel, Peter A1 - Paquette, Nathalie A1 - Lantuit, Hugues A1 - Körte, Lisa A1 - Wetterich, Sebastian T1 - Regional environmental change versus local signal preservation in Holocene thermokarst lake sediments BT - a case study from Herschel Island, Yukon (Canada) JF - Journal of paleolimnolog N2 - Thermokarst lakes cover nearly one fourth of ice-rich permafrost lowlands in the Arctic. Sediments from an athalassic subsaline thermokarst lake on Herschel Island (69°36′N; 139°04′W, Canadian Arctic) were used to understand regional changes in climate and in sediment transport, hydrology, nutrient availability and permafrost disturbance. The sediment record spans the last ~ 11,700 years and the basal date is in good agreement with the Holocene onset of thermokarst initiation in the region. Electrical conductivity in pore water continuously decreases, thus indicating desalinization and continuous increase of lake size and water level. The inc/coh ratio of XRF scans provides a high-resolution organic-carbon proxy which correlates with TOC measurements. XRF-derived Mn/Fe ratios indicate aerobic versus anaerobic conditions which moderate the preservation potential of organic matter in lake sediments. The coexistence of marine, brackish and freshwater ostracods and foraminifera is explained by (1) oligohaline to mesohaline water chemistry of the past lake and (2) redeposition of Pleistocene specimens found within upthrusted marine sediments around the lake. Episodes of catchment disturbance are identified when calcareous fossils and allochthonous material were transported into the lake by thermokarst processes such as active-layer detachments, slumping and erosion of ice-rich shores. The pollen record does not show major variations and the pollen-based climate record does not match well with other summer air temperature reconstructions from this region. Local vegetation patterns in small catchments are strongly linked to morphology and sub-surface permafrost conditions rather than to climate. Multidisciplinary studies can identify the onset and life cycle of thermokarst lakes as they play a crucial role in Arctic freshwater ecosystems and in the global carbon cycle of the past, present and future. KW - Arctic KW - Permafrost KW - Athalassic subsaline lake KW - XRF scanning KW - Pore-water hydrochemistry KW - Ostracoda Y1 - 2018 U6 - https://doi.org/10.1007/s10933-018-0025-0 SN - 0921-2728 SN - 1573-0417 VL - 60 IS - 1 SP - 77 EP - 96 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Masyagina, Oxana. V. A1 - Evgrafova, S. Yu A1 - Bugaenko, T. N. A1 - Kholodilova, V. V. A1 - Krivobokov, L. A1 - Korets, M. A. A1 - Wagner, Dirk T1 - Permafrost landslides promote soil CO2 emission and hinder C accumulation JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Landslides arc common in high-latitude forest ecosystems that have developed on permafrost. The most vulnerable areas in the permafrost territories of Siberia occur on the south-facing slopes of northern rivers, where they arc observed on about 20% of the total area of river slopes. Landslide disturbances will likely increase with climate change especially due to increasing summer-autumn precipitation. These processes are the most destructive natural disturbance agent and lead to the complete removal of pre-slide forest ecosystems (vegetation cover and soil). To evaluate postsliding ecosystem succession, we undertook integrated ecological research at landslides of different age classes along the Nizhnyaya Tunguska River and the Kochechum River (Tura, Krasnoyarsk region, Russia). Just after the event (at the one-year-old site), we registered a drop in soil respiration, a threefold lower microbial respiration rate, and a fourfold smaller mineral soil carbon and nitrogen stock at bare soil (melkozem) plots at the middle location of the site as compared with the non affected control site. The recovery of disturbed areas began with the re-establishment of plant cover and the following accumulation of an organic soil layer. During the 35-year succession (L1972), the accumulated layer (0 layer)at the oldest site contained similar C- and N stocks to those found at the control sites. However, the mineral soil C- and N stocks and the microbial biomass even of the oldest landslide area- did not reach the value of these parameters in control plots. Later, the soil respiration level and the eco-physiological status of soil microbiota also recovered due to these changes. This study demonstrates that the recovery after landslides in permafrost forests takes several decades. In addition, the degradation of permafrost due to landslides clearly hinders the accumulation of soil organic matter in the mineral soil. (C) 2018 Elsevier B.v. All rights reserved. KW - Landslides KW - Soil microorganisms KW - Permafrost KW - Soil C- and N stocks KW - Boreal ecosystems KW - Soil respiration Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2018.11.468 SN - 0048-9697 SN - 1879-1026 VL - 657 SP - 351 EP - 364 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schirrmeister, Lutz A1 - Bobrov, Anatoly A1 - Raschke, Elena A1 - Herzschuh, Ulrike A1 - Strauss, Jens A1 - Pestryakova, Luidmila Agafyevna A1 - Wetterich, Sebastian T1 - Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands JF - Arctic, antarctic, and alpine research : an interdisciplinary journal N2 - Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents, and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 +/- 30 and 1676 +/- 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions because of rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 +/- 33 and 1632 +/- 32 years BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture. KW - Permafrost KW - cryolithology KW - radiocarbon dating KW - paleoecology KW - rhizopods KW - pollen KW - plant macro-fossils Y1 - 2018 U6 - https://doi.org/10.1080/15230430.2018.1462595 SN - 1523-0430 SN - 1938-4246 VL - 50 IS - 1 PB - Institute of Arctic and Alpine Research, University of Colorado CY - Boulder ER - TY - JOUR A1 - Tian, Fang A1 - Cao, Xianyong A1 - Dallmeyer, Anne A1 - Lohmann, Gerrit A1 - Zhang, Xu A1 - Ni, Jian A1 - Andreev, Andrei A1 - Anderson, Patricia M. A1 - Lozhkin, Anatoly V. A1 - Bezrukova, Elena A1 - Rudaya, Natalia A1 - Xu, Qinghai A1 - Herzschuh, Ulrike T1 - Biome changes and their inferred climatic drivers in northern and eastern continental Asia at selected times since 40 cal ka BP JF - Vegetation History and Archaeobotany N2 - Recent global warming is pronounced in high-latitude regions (e.g. northern Asia), and will cause the vegetation to change. Future vegetation trends (e.g. the "arctic greening") will feed back into atmospheric circulation and the global climate system. Understanding the nature and causes of past vegetation changes is important for predicting the composition and distribution of future vegetation communities. Fossil pollen records from 468 sites in northern and eastern Asia were biomised at selected times between 40 cal ka bp and today. Biomes were also simulated using a climate-driven biome model and results from the two approaches compared in order to help understand the mechanisms behind the observed vegetation changes. The consistent biome results inferred by both approaches reveal that long-term and broad-scale vegetation patterns reflect global- to hemispheric-scale climate changes. Forest biomes increase around the beginning of the late deglaciation, become more widespread during the early and middle Holocene, and decrease in the late Holocene in fringe areas of the Asian Summer Monsoon. At the southern and southwestern margins of the taiga, forest increases in the early Holocene and shows notable species succession, which may have been caused by winter warming at ca. 7 cal ka bp. At the northeastern taiga margin (central Yakutia and northeastern Siberia), shrub expansion during the last deglaciation appears to prevent the permafrost from thawing and hinders the northward expansion of evergreen needle-leaved species until ca. 7 cal ka bp. The vegetation-climate disequilibrium during the early Holocene in the taiga-tundra transition zone suggests that projected climate warming will not cause a northward expansion of evergreen needle-leaved species. KW - Siberia KW - China KW - Northern Asia KW - Model-data comparison KW - Pollen KW - Permafrost KW - Vegetation-climate disequilibrium Y1 - 2018 U6 - https://doi.org/10.1007/s00334-017-0653-8 SN - 0939-6314 SN - 1617-6278 VL - 27 IS - 2 SP - 365 EP - 379 PB - Springer CY - New York ER -