TY - JOUR A1 - Peng, Xingzhou A1 - Behl, Marc A1 - Zhang, Pengfei A1 - Mazurek-Budzynska, Magdalena A1 - Feng, Yakai A1 - Lendlein, Andreas T1 - Synthesis of Well-Defined Dihydroxy Telechelics by (Co)polymerization of Morpholine-2,5-Diones Catalyzed by Sn(IV) Alkoxide JF - Macromolecular bioscience N2 - Well-defined dihydroxy telechelic oligodepsipeptides (oDPs), which have a high application potential as building blocks for scaffold materials for tissue engineering applications or particulate carrier systems for drug delivery applications are synthesized by ring-opening polymerization (ROP) of morpholine-2,5-diones (MDs) catalyzed by 1,1,6,6-tetra-n-butyl-1,6-distanna-2,5,7,10-tetraoxacyclodecane (Sn(IV) alkoxide). In contrast to ROP catalyzed by Sn(Oct)(2), the usage of Sn(IV) alkoxide leads to oDPs, with less side products and well-defined end groups, which is crucial for potential pharmaceutical applications. A slightly faster reaction of the ROP catalyzed by Sn(IV) alkoxide compared to the ROP initiated by Sn(Oct)(2)/EG is found. Copolymerization of different MDs resulted in amorphous copolymers with T(g)s between 44 and 54 degrees C depending on the molar comonomer ratios in the range from 25% to 75%. Based on the well-defined telechelic character of the Sn(IV) alkoxide synthesized oDPs as determined by matrix-assisted laser desorption/ionization time of flight measurements, they resemble interesting building blocks for subsequent postfunctionalization or multifunctional materials based on multiblock copolymer systems whereas the amorphous oDP-based copolymers are interesting building blocks for matrices of drug delivery systems. KW - oligodepsipeptides KW - ring-opening polymerization KW - Sn(IV) alkoxide KW - telechelics KW - tin(II) 2-ethylhexanoate Y1 - 2018 U6 - https://doi.org/10.1002/mabi.201800257 SN - 1616-5187 SN - 1616-5195 VL - 18 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Behrendt, Felix Nicolas A1 - Schlaad, Helmut T1 - Entropy-Driven Ring-Opening Disulfide Metathesis Polymerization for the Synthesis of Functional Poly(disulfide)s JF - Macromolecular rapid communications N2 - Metal-free entropy-driven disulfide metathesis polymerization of unsaturated L-cystine based macrocycles produces high-molar-mass heterofunctional poly(disulfide)s, i.e., poly(ester-disulfide-alkene) and poly(amide-disulfide-alkene); M-w(app) = 44-60 kDa, (sic) > 1.7. The polymerization is fast and reaches equilibrium within 1-5 minutes (monomer conversion 70-90%) in polar aprotic solvents such as N,N-dimethylacetamide, dimethylsulfoxide, or y-valerolactone. Thiol-terminated polymers are stable in bulk or when dissolved in weakly polar solvents, but rapidly depolymerize in dilute polar solution. KW - disulfide KW - macrocycles KW - metathesis KW - ring-opening polymerization Y1 - 2018 U6 - https://doi.org/10.1002/marc.201700735 SN - 1022-1336 SN - 1521-3927 VL - 39 IS - 6 PB - Wiley-VCH CY - Weinheim ER -