TY - JOUR A1 - Gonzalez Manrique, Sergio Javier A1 - Kuckein, Christoph A1 - Collados, M. A1 - Denker, Carsten A1 - Solanki, S. K. A1 - Gomory, P. A1 - Verma, Meetu A1 - Balthasar, H. A1 - Lagg, A. A1 - Diercke, Andrea T1 - Temporal evolution of arch filaments as seen in He I 10 830 angstrom JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 angstrom spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 angstrom triplet. The arch filament expanded in height and extended in length from 13 ' to 21 '. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s(-1). Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s(-1) in the chromosphere. The temporal evolution of He I 10 830 angstrom profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time. KW - Sun: chromosphere KW - Sun: activity KW - methods: observational KW - methods: data analysis KW - techniques: high angular resolution Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201832684 SN - 1432-0746 VL - 617 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Denker, Carsten A1 - Kuckein, Christoph A1 - Verma, Meetu A1 - Manrique Gonzalez, Sergio Javier Gonzalez A1 - Diercke, Andrea A1 - Enke, Harry A1 - Klar, Jochen A1 - Balthasar, Horst A1 - Louis, Rohan E. A1 - Dineva, Ekaterina Ivanova T1 - High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope-A Collaborative Research Environment for High-resolution Solar Physics JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times "freezing" the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the "early science" phase with the 1.5 m GREGOR solar telescope (2014–2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR's post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry–Pérot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for "big data" in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures. KW - astronomical databases KW - methods: data analysis KW - Sun: chromosphere KW - Sun: photosphere KW - techniques: image processing KW - techniques: spectroscopic Y1 - 2018 U6 - https://doi.org/10.3847/1538-4365/aab773 SN - 0067-0049 SN - 1538-4365 VL - 236 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Diercke, Andrea A1 - Kuckein, Christoph A1 - Verma, Meetu A1 - Denker, Carsten T1 - Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods. We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. H alpha images from the Kanzelhohe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both H alpha and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results. We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (lambda 171 angstrom, lambda 193 angstrom, lambda 304 angstrom, and lambda 211 angstrom). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of lambda 171 angstrom and lambda 193 angstrom images. In the lambda 304 angstrom wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the lambda 211 angstrom wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in H alpha and EUV images is caused by different absorption processes, i.e., spectral line absorption and absorption by hydrogen and helium continua, respectively. The horizontal flows reach mean flow speeds of about 0.5 km s(-1) for all wavelength bands. The highest horizontal flow speeds are identified in the lambda 171 angstrom band with flow speeds of up to 2.5 km s(-1). The results are averaged over a time series of 90 minutes. Because the LCT sampling window has finite width, a spatial degradation cannot be avoided leading to lower estimates of the flow velocities as compared to feature tracking or Doppler measurements. The counter-streaming flows cover about 15-20% of the whole area of the EUV filament channel and are located in the central part of the spine. Conclusions. Compared to the ground-based observations, the absence of seeing effects in AIA observations reveal counter-streaming flows in the filament even with a moderate image scale of 0 '.6 pixel(-1). Using a contrast enhancement technique, these flows can be detected and quantified with LCT in different wavelengths. We confirm the omnipresence of counter-streaming flows also in giant quiet-Sun filaments. KW - methods: observational KW - Sun: filaments, prominences KW - Sun: activity KW - Sun: chromosphere KW - Sun: corona KW - techniques: image processing Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730536 SN - 1432-0746 VL - 611 PB - EDP Sciences CY - Les Ulis ER -