TY - JOUR A1 - Nowotny, Kerstin A1 - Castro, Jose Pedro A1 - Hugo, Martin A1 - Braune, Sabine A1 - Weber, Daniela A1 - Pignitter, Marc A1 - Somoza, Veronika A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Grune, Tilman T1 - Oxidants produced by methylglyoxal-modified collagen trigger ER stress and apoptosis in skin fibroblasts JF - Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research N2 - Methylglyoxal (MG), a highly reactive dicarbonyl, interacts with proteins to form advanced glycation end products (AGEs). AGEs include a variety of compounds which were shown to have damaging potential and to accumulate in the course of different conditions such as diabetes mellitus and aging. After confirming collagen as a main target for MG modifications in vivo within the extracellular matrix, we show here that MG-collagen disrupts fibroblast redox homeostasis and induces endoplasmic reticulum (ER) stress and apoptosis. In particular, MG-collagen-induced apoptosis is associated with the activation of the PERK-eIF2 alpha pathway and caspase-12. MG-collagen contributes to altered redox homeostasis by directly generating hydrogen peroxide and oxygen-derived free radicals. The induction of ER stress in human fibroblasts was confirmed using collagen extracts isolated from old mice in which MG-derived AGEs were enriched. In conclusion, MG-derived AGEs represent one factor contributing to diminished fibroblast function during aging. KW - Advanced glycation end products KW - Aging KW - Apoptosis KW - Collagen KW - ER stress KW - Methylglyoxal KW - Redox homeostasis Y1 - 2018 U6 - https://doi.org/10.1016/j.freeradbiomed.2018.03.022 SN - 0891-5849 SN - 1873-4596 VL - 120 SP - 102 EP - 113 PB - Elsevier CY - New York ER - TY - JOUR A1 - Fernando, Raquel A1 - Drescher, Cathleen A1 - Deubel, Stefanie A1 - Jung, Tobias A1 - Ost, Mario A1 - Klaus, Susanne A1 - Grune, Tilman A1 - Castro, Jose Pedro T1 - Low proteasomal activity in fast skeletal muscle fibers is not associated with increased age-related oxidative damage JF - Experimental gerontology N2 - The skeletal muscle is a crucial tissue for maintaining whole body homeostasis. Aging seems to have a disruptive effect on skeletal muscle homeostasis including proteostasis. However, how aging specifically impacts slow and fast twitch fiber types remains elusive. Muscle proteostasis is largely maintained by the proteasomal system. Here we characterized the proteasomal system in two different fiber types, using a non-sarcopenic aging model. By analyzing the proteasomal activity and amount, as well as the polyubiquitinated proteins and the level of protein oxidation in Musculus soleus (Sol) and Musculus extensor digitorum longus (EDL), we found that the slow twitch Sol muscle shows an overall higher respiratory and proteasomal activity in young and old animals. However, especially during aging the fast twitch EDL muscle reduces protein oxidation by an increase of antioxidant capacity. Thus, under adaptive non-sarcopenic conditions, the two fibers types seem to have different strategies to avoid age-related changes. KW - Proteasomal system KW - Skeletal muscle KW - Fast and slow fibers KW - Polyubiquitination KW - Oxidized proteins KW - Antioxidants KW - Aging KW - Mitochondrial respiration Y1 - 2018 U6 - https://doi.org/10.1016/j.exger.2018.10.018 SN - 0531-5565 SN - 1873-6815 VL - 117 SP - 45 EP - 52 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Fernando, Raquel A1 - Drescher, Cathleen A1 - Nowotny, Kerstin A1 - Grune, Tilman A1 - Castro, Jose Pedro T1 - Impaired proteostasis during skeletal muscle aging JF - Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research N2 - Aging is a complex phenomenon that has detrimental effects on tissue homeostasis. The skeletal muscle is one of the earliest tissues to be affected and to manifest age-related changes such as functional impairment and the loss of mass. Common to these alterations and to most of tissues during aging is the disruption of the proteostasis network by detrimental changes in the ubiquitin-proteasomal system (UPS) and the autophagy-lysosomal system (ALS). In fact, during aging the accumulation of protein aggregates, a process mainly driven by increased levels of oxidative stress, has been observed, clearly demonstrating UPS and ALS dysregulation. Since the UPS and ALS are the two most important pathways for the removal of misfolded and aggregated proteins and also of damaged organelles, we provide here an overview on the current knowledge regarding the connection between the loss of proteostasis and skeletal muscle functional impairment and also how redox regulation can play a role during aging. Therefore, this review serves for a better understanding of skeletal muscle aging in regard to the loss of proteostasis and how redox regulation can impact its function and maintenance. KW - Skeletal muscle KW - Proteostasis KW - Proteasome and lysosome KW - Oxidative stress KW - Redox regulation KW - Aging Y1 - 2018 U6 - https://doi.org/10.1016/j.freeradbiomed.2018.08.037 SN - 0891-5849 SN - 1873-4596 VL - 132 SP - 58 EP - 66 PB - Elsevier CY - New York ER - TY - JOUR A1 - Franz, Kristina A1 - Ost, Mario A1 - Otten, Lindsey A1 - Herpich, Catrin A1 - Coleman, Verena A1 - Endres, Anne-Sophie A1 - Klaus, Susanne A1 - Müller-Werdan, Ursula A1 - Norman, Kristina T1 - Higher serum levels of fibroblast growth factor 21 in old patients with cachexia JF - Nutrition : the international journal of applied and basic nutritional sciences N2 - Objective: Fibroblast growth factor (FGF)21 is promptly induced by short fasting in animal models to regulate glucose and fat metabolism. Data on FGF21 in humans are inconsistent and FGF21 has not yet been investigated in old patients with cachexia, a complex syndrome characterized by inflammation and weight loss. The aim of this study was to explore the association of FGF21 with cachexia in old patients compared with their healthy counterparts. Methods: Serum FGF21 and its inactivating enzyme fibroblast activation protein (FAP)-cc were measured with enzyme-linked immunoassays. Cachexia was defined as >= 5% weight loss in the previous 3 mo and concurrent anorexia (Council on Nutrition appetite questionnaire). Results: We included 103 patients with and without cachexia (76.9 +/- 5.2 y of age) and 56 healthy controls (72.9 +/- 5.9 y of age). Cachexia was present in 16.5% of patients. These patients had significantly higher total FGF21 levels than controls (952.1 +/- 821.3 versus 525.2 +/- 560.3 pg/mL; P= 0.012) and the lowest FGF21 levels (293.3 +/- 150.9 pg/mL) were found in the control group (global P < 0.001). Although FAP-alpha did not differ between the three groups (global P = 0.082), bioactive FGF21 was significantly higher in patients with cachexia (global P = 0.002). Risk factor-adjusted regression analyses revealed a significant association between cachexia and total ((beta = 649.745 pg/mL; P < 0.001) and bioactive FGF21 (beta = 393.200 pg/mL; P <0.001), independent of sex, age, and body mass index. Conclusions: Patients with cachexia exhibited the highest FGF21 levels. Clarification is needed to determine whether this is an adaptive response to nutrient deprivation in disease-related cachexia or whether the increased FGF21 values contribute to the catabolic state. (C) 2018 Elsevier Inc. All rights reserved. KW - Fibroblast growth factor 21 KW - Cachexia KW - Anorexia KW - Aging KW - Biomarker Y1 - 2018 U6 - https://doi.org/10.1016/j.nut.2018.11.004 SN - 0899-9007 SN - 1873-1244 VL - 63-64 SP - 81 EP - 86 PB - Elsevier CY - New York ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Uematsu, Azusa A1 - Sanders, Lianne A1 - Kliegl, Reinhold A1 - Tollar, Jozsef A1 - Moraes, Renato A1 - Granacher, Urs T1 - Beam Walking to Assess Dynamic Balance in Health and Disease BT - a Protocol for the "BEAM" Multicenter Observational Study JF - Gerontology N2 - Background: Dynamic balance keeps the vertical projection of the center of mass within the base of support while walking. Dynamic balance tests are used to predict the risks of falls and eventual falls. The psychometric properties of most dynamic balance tests are unsatisfactory and do not comprise an actual loss of balance while walking. Objectives: Using beam walking distance as a measure of dynamic balance, the BEAM consortium will determine the psychometric properties, lifespan and patient reference values, the relationship with selected “dynamic balance tests,” and the accuracy of beam walking distance to predict falls. Methods: This cross-sectional observational study will examine healthy adults in 7 decades (n = 432) at 4 centers. Center 5 will examine patients (n = 100) diagnosed with Parkinson’s disease, multiple sclerosis, stroke, and balance disorders. In test 1, all participants will be measured for demographics, medical history, muscle strength, gait, static balance, dynamic balance using beam walking under single (beam walking only) and dual task conditions (beam walking while concurrently performing an arithmetic task), and several cognitive functions. Patients and healthy participants age 50 years or older will be additionally measured for fear of falling, history of falls, miniBESTest, functional reach on a force platform, timed up and go, and reactive balance. All participants age 50 years or older will be recalled to report fear of falling and fall history 6 and 12 months after test 1. In test 2, seven to ten days after test 1, healthy young adults and age 50 years or older (n = 40) will be retested for reliability of beam walking performance. Conclusion: We expect to find that beam walking performance vis-à-vis the traditionally used balance outcomes predicts more accurately fall risks and falls. Clinical Trial Registration Number: NCT03532984. KW - Aging KW - Gait KW - Balance KW - Dual tasks KW - Falls Y1 - 2018 U6 - https://doi.org/10.1159/000493360 SN - 0304-324X SN - 1423-0003 VL - 65 IS - 4 SP - 332 EP - 339 PB - Karger CY - Basel ER -