TY - JOUR A1 - Heinecke, Liv A1 - Fletcher, W. J. A1 - Mischke, Steffen A1 - Tian, Fang A1 - Herzschuh, Ulrike T1 - Vegetation change in the eastern Pamir Mountains, Tajikistan, inferred from Lake Karakul pollen spectra of the last 28 kyr JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - We present a pollen record for last 28 cal kyr BP from the eastern basin of Lake Karakul, the largest lake in Tajikistan, located in the eastern Pamir Mountains at 3915 m asl, a geographically complex region. The pollen record is dominated by Artemisia and Chenopodiaceae, while other taxa, apart from Poaceae, are present in low quantities and rarely exceed 5% in total. Arboreal pollen occur predominantly from similar to 28 to similar to 13 cal kyr BP, but as likely no trees occurred in the high mountain regions of the eastern Pamir during this time due to the high altitude and cold climate, arboreal taxa are attributed to long distance transport, probably by the Westerlies, the dominant atmospheric circulation. Tree pollen influx decreases strongly after similar to 13 cal kyr BP, allowing the pollen spectra to be interpreted as a regional vegetation signal. We infer that from 27.6 to 19.4 cal kyr BP the eastern Pamir was dominated by dry mountain steppe with low vegetation cover, while from 19.0 to 13.6 cal kyr BP Artemisia values increase and Chenopodiaceae, most herb taxa, and inferred far distant input from arboreal taxa decrease. Between 12.9 and 6.7 cal kyr BP open steppe vegetation dominated with maximum values in Ephedra, and while steppe taxa still dominated the spectra from 5.4 to 1 cal kyr BP, meadow taxa start to increase. During the last millennium, alpine steppe and alpine meadows expanded and a weak human influence can be ascertained from the increase of Asteraceae and the occurrence of Plantago pollen in the spectra. KW - Arid Central Asia KW - High Asia KW - palynology KW - vegetation reconstruction KW - lake sediments Y1 - 2018 U6 - https://doi.org/10.1016/j.palaeo.2018.08.010 SN - 0031-0182 SN - 1872-616X VL - 511 SP - 232 EP - 242 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tian, Fang A1 - Cao, Xianyong A1 - Dallmeyer, Anne A1 - Lohmann, Gerrit A1 - Zhang, Xu A1 - Ni, Jian A1 - Andreev, Andrei A1 - Anderson, Patricia M. A1 - Lozhkin, Anatoly V. A1 - Bezrukova, Elena A1 - Rudaya, Natalia A1 - Xu, Qinghai A1 - Herzschuh, Ulrike T1 - Biome changes and their inferred climatic drivers in northern and eastern continental Asia at selected times since 40 cal ka BP JF - Vegetation History and Archaeobotany N2 - Recent global warming is pronounced in high-latitude regions (e.g. northern Asia), and will cause the vegetation to change. Future vegetation trends (e.g. the "arctic greening") will feed back into atmospheric circulation and the global climate system. Understanding the nature and causes of past vegetation changes is important for predicting the composition and distribution of future vegetation communities. Fossil pollen records from 468 sites in northern and eastern Asia were biomised at selected times between 40 cal ka bp and today. Biomes were also simulated using a climate-driven biome model and results from the two approaches compared in order to help understand the mechanisms behind the observed vegetation changes. The consistent biome results inferred by both approaches reveal that long-term and broad-scale vegetation patterns reflect global- to hemispheric-scale climate changes. Forest biomes increase around the beginning of the late deglaciation, become more widespread during the early and middle Holocene, and decrease in the late Holocene in fringe areas of the Asian Summer Monsoon. At the southern and southwestern margins of the taiga, forest increases in the early Holocene and shows notable species succession, which may have been caused by winter warming at ca. 7 cal ka bp. At the northeastern taiga margin (central Yakutia and northeastern Siberia), shrub expansion during the last deglaciation appears to prevent the permafrost from thawing and hinders the northward expansion of evergreen needle-leaved species until ca. 7 cal ka bp. The vegetation-climate disequilibrium during the early Holocene in the taiga-tundra transition zone suggests that projected climate warming will not cause a northward expansion of evergreen needle-leaved species. KW - Siberia KW - China KW - Northern Asia KW - Model-data comparison KW - Pollen KW - Permafrost KW - Vegetation-climate disequilibrium Y1 - 2018 U6 - https://doi.org/10.1007/s00334-017-0653-8 SN - 0939-6314 SN - 1617-6278 VL - 27 IS - 2 SP - 365 EP - 379 PB - Springer CY - New York ER -