TY - JOUR A1 - Reindl, Nicole A1 - Bainbridge, M. A1 - Przybilla, Norbert A1 - Geier, Stephan A1 - Prvak, M. A1 - Krticka, Jiri A1 - Ostensen, R. H. A1 - Telting, J. A1 - Werner, K. T1 - Unravelling the baffling mystery of the ultrahot wind phenomenon in white dwarfs JF - Monthly notices of the Royal Astronomical Society N2 - The presence of ultrahigh excitation (UHE) absorption lines (e.g. OVIII) in the optical spectra of several of the hottest white dwarfs poses a decades-long mystery and is something that has never been observed in any other astrophysical object. The occurrence of such features requires a dense environment with temperatures near 10(6) K, by far exceeding the stellar effective temperature. Here we report the discovery of a new hot wind white dwarf, GALEXJ014636.8+323615. Astonishingly, we found for the first time rapid changes of the equivalent widths of the UHE features, which are correlated to the rotational period of the star (P=0.242035 d). We explain this with the presence of a wind-fed circumstellar magnetosphere in which magnetically confined wind shocks heat up the material to the high temperatures required for the creation of the UHE lines. The photometric and spectroscopic variability of GALEXJ014636.8+323615 can then be understood as consequence of the obliquity of the magnetic axis with respect to the rotation axis of the white dwarf. This is the first time a wind-fed circumstellar magnetosphere around an apparently isolated white dwarf has been discovered and finally offers a plausible explanation of the ultrahot wind phenomenon. KW - stars: AGB and post-AGB KW - stars: evolution KW - stars: magnetic field Y1 - 2018 U6 - https://doi.org/10.1093/mnrasl/sly191 SN - 0035-8711 SN - 1365-2966 VL - 482 IS - 1 SP - L93 EP - L98 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Reindl, Nicole A1 - Finch, Nicolle L. A1 - Schaffenroth, Veronika A1 - Barstow, Martin A. A1 - Casewell, Sarah L. A1 - Geier, Stephan A1 - Bertolami Miller, Marcelo Miguel A1 - Taubenberger, Stefan T1 - Revealing the true nature of Hen 2-428 JF - Galaxies N2 - The nucleus of Hen 2-428 is a short orbital period (4.2 h) spectroscopic binary, whose status as potential supernovae type Ia progenitor has raised some controversy in the literature. We present preliminary results of a thorough analysis of this interesting system, which combines quantitative non-local thermodynamic (non-LTE) equilibrium spectral modelling, radial velocity analysis, multi-band light curve fitting, and state-of-the art stellar evolutionary calculations. Importantly, we find that the dynamical system mass that is derived by using all available He II lines does not exceed the Chandrasekhar mass limit. Furthermore, the individual masses of the two central stars are too small to lead to an SN Ia in case of a dynamical explosion during the merger process. KW - binaries: spectroscopic KW - stars: atmospheres KW - stars: abundances KW - supernovae Y1 - 2018 U6 - https://doi.org/10.3390/galaxies6030088 SN - 2075-4434 VL - 6 IS - 3 ER - TY - JOUR A1 - Reindl, Nicole A1 - Geier, Stephan A1 - Ostensen, R. H. T1 - Discovery of two bright DO-type white dwarfs JF - Monthly notices of the Royal Astronomical Society N2 - We discovered two bright DO-type white dwarfs, GALEXJ053628.3+544854 (J0536+5448) and GALEXJ231128.0+292935(J2311+2929), which rank among the eight brightest DO-type white dwarfs known. Our non-LTE model atmosphere analysis reveals effective temperatures and surface gravities of T-eff = 80000 +/- 4600K and log g = 8.25 +/- 0.15 for J0536+5448 and T-eff = 69400 +/- 900K and log g = 7.80 +/- 0.06 for J2311+2929. The latter shows a significant amount of carbon in its atmosphere (C = 0.003(-0.002)(+0.005), by mass), while for J0536+5448 we could derive only an upper limit of C < 0.003. Furthermore, we calculated spectroscopic distances for the two stars and found a good agreement with the distances derived from the Gaia parallaxes. KW - stars: abundances KW - stars: atmospheres KW - white dwarfs Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty1875 SN - 0035-8711 SN - 1365-2966 VL - 480 IS - 1 SP - 1211 EP - 1217 PB - Oxford Univ. Press CY - Oxford ER -