TY - JOUR A1 - Paramonov, Guennaddi K. A1 - Klamroth, Tillmann A1 - Lu, H. Z. A1 - Bandrauk, Andre D. T1 - Quantum dynamics, isotope effects, and power spectra of H-2(+) and HD+ excited to the continuum by strong one-cycle laser pulses: Three-dimensional non-Born-Oppenheimer simulations JF - Physical review : A, Atomic, molecular, and optical physics N2 - Non-Born-Oppenheimer quantum dynamics of H-2(+) and HD+ excited by single one-cycle laser pulses linearly polarized along the molecular (z) axis have been studied within a three-dimensional model, including the internuclear distance R and electron coordinates z and rho, by means of the numerical solution of the time-dependent Schrodinger equation on the timescale of about 200 fs. Laser carrier frequencies corresponding to the wavelengths of lambda(l) = 400 and 50 nm have been used and the amplitudes of the pulses have been chosen such that the energies of H-2(+) and HD+ are above the dissociation threshold after the ends of the laser pulses. It is shown that excitation of H-2(+) and HD+ above the dissociation threshold is accompanied by formation of vibrationally "hot" and "cold" ensembles of molecules. Dissociation of vibrationally "hot" molecules does not prevent the appearance of post-laser-pulse electronic oscillations, parallel z oscillations, and transversal rho oscillations. Moreover, dissociation of "hot" molecules does not influence characteristic frequencies of electronic z and rho oscillations. The main difference between the laser-induced quantum dynamics of homonuclear H-2(+) and its heteronuclear isotope HD+ is that fast post-laser-pulse electronic z oscillations in H-2(+) are regularly shaped with the period of tau(shp) approximate to 30 fs corresponding to nuclear oscillations in H-2(+), while electronic z oscillations in HD+ arise as "echo pulses" of its initial excitation and appear with the period of tau(echo) approximate to 80 fs corresponding to nuclear motion in HD+. Accordingly, corresponding power spectra of nuclear motion contain strong low-frequency harmonics at omega(shp) = 2 pi/tau(shp) in H2(+) and omega(echo) = 2 pi/tau(echo) in HD+. Power spectra related to both electronic and nuclear motion have been calculated in the acceleration form. Both higher- and lower-order harmonics are generated at the laser wavelength lambda(l) = 400 nm, while only lower-order harmonics are well pronounced at lambda(l) = 50 nm. It is also shown that a rationalized harmonic order, defined in terms of the frequency of the laser-induced electronic z oscillations, agrees with the concept of inversion symmetry for electronic motion in diatomic molecules. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevA.98.063431 SN - 2469-9926 SN - 2469-9934 VL - 98 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Paramonov, Guennaddi K. A1 - Saalfrank, Peter T1 - Muonic molecular ions pp mu and pd mu, driven by superintense VUV laser pulses BT - Postexcitation muonic and nuclear oscillations and high-order harmonic generation JF - Physical review : A, Atomic, molecular, and optical physics N2 - The non-Born-Oppenheimer quantum dynamics of pp mu and pd mu molecular ions excited by ultrashort, superintense VUV laser pulses polarized along the molecular axis (z) is studied by the numerical solution of the time-dependent Schrodinger equation within a three-dimensional (3D) model, including the internuclear distance R and muon coordinates z and rho, a transversal degree of freedom. It is shown that in both pp mu and pd mu, muons approximately follow the applied laser field out of phase. After the end of the laser pulse, expectation values < z >, < p >, and < R > demonstrate "post-laser-pulse" oscillations in both pp mu and pd mu. In the case of pd mu, the post-laser-pulse oscillations of < z > and < R > appear as shaped "echo pulses." Power spectra, which are related to high-order harmonic generation (HHG), generated due to muonic and nuclear motion are calculated in the acceleration form. For pd mu it is found that there exists a unique characteristic frequency omega(pd mu)(osc) representing both frequencies of post-laser-pulse muonic oscillations and the frequency of nuclear vibrations, which manifest themselves by very sharp maxima in the corresponding power spectra of pd mu. The homonuclear pp p. ion does not possess such a unique characteristic frequency. The "exact" dynamics and power, and HHG spectra of the 3D model are compared with a Born-Oppenheimer, fixed-nuclei model featuring interesting differences: postpulse oscillations are absent and HHG spectra are affected indirectly or directly by nuclear motion. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevA.97.053408 SN - 2469-9926 SN - 2469-9934 VL - 97 IS - 5 PB - American Physical Society CY - College Park ER -