TY - JOUR A1 - Semenyshyn, Rostyslav A1 - Hentschel, Mario A1 - Stanglmair, Christoph A1 - Teutsch, Tanja A1 - Tarin, Cristina A1 - Pacholski, Claudia A1 - Giessen, Harald A1 - Neubrech, Frank T1 - In vitro monitoring conformational changes of polypeptide monolayers using infrared plasmonic nanoantennas JF - Nano letters : a journal dedicated to nanoscience and nanotechnology N2 - Proteins and peptides play a predominant role in biochemical reactions of living cells. In these complex environments, not only the constitution of the molecules but also their three-dimensional configuration defines their functionality. This so-called secondary structure of proteins is crucial for understanding their function in living matter. Misfolding, for example, is suspected as the cause of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Ultimately, it is necessary to study a single protein and its folding dynamics. Here, we report a first step in this direction, namely ultrasensitive detection and discrimination of in vitro polypeptide folding and unfolding processes using resonant plasmonic nanoantennas for surface-enhanced vibrational spectroscopy. We utilize poly-l-lysine as a model system which has been functionalized on the gold surface. By in vitro infrared spectroscopy of a single molecular monolayer at the amide I vibrations we directly monitor the reversible conformational changes between α-helix and β-sheet states induced by controlled external chemical stimuli. Our scheme in combination with advanced positioning of the peptides and proteins and more brilliant light sources is highly promising for ultrasensitive in vitro studies down to the single protein level. KW - Plasmonics KW - surface-enhanced infrared absorption spectroscopy KW - proteins KW - conformational changes KW - biosensing Y1 - 2019 U6 - https://doi.org/10.1021/acs.nanolett.8b02372 SN - 1530-6984 SN - 1530-6992 VL - 19 IS - 1 SP - 1 EP - 7 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Estevez-Espinoza, J. O. A1 - Salazar-Kuri, U. A1 - Pacholski, Claudia A1 - Mochan, Wolf Luis A1 - Agarwal, Vivechana T1 - Fabrication of ordered tubular porous silicon structures by colloidal lithography and metal assisted chemical etching BT - SERS performance of 2D porous silicon structures JF - Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces N2 - Fabrication of well-ordered porous silicon tubular structures using colloidal lithography and metal assisted chemical etching is reported. A continuous hexagonal hole/particle gold pattern was designed over monocrystalline silicon through deposition of polyNIPAM microspheres, followed by the surface decoration with gold nanoparticles and thermal treatment. An etching reaction with HF, ethanol and H2O2 dissolved the silicon in contact with the metal nanoparticles (NP), creating a porous tubular array in the "off-metal area". The morphological characterization revealed the formation of a cylindrical hollow porous tubular shape with external and internal diameter of approx. 900 nm and 400 nm respectively, though it can be tuned to other desired sizes by choosing an appropriate dimension for the microspheres. The porous morphology and optical properties were studied as a function of resistivity of silicon substrates. Compared to two different gold templates on cSi and nontubular porous pillar structures, porous silicon tubular framework revealed a maximum surface enhanced Raman scattering enhancement factor of 10(6) for the detection of 6-mercaptopurine (6-MP). Due to the large surface area available for any surface modification, open nanostructured platforms such as those studied here have potential applications in the field of reflection/photoluminescene and SERS based optical bio-/chemical sensors. KW - SERS KW - Porous silicon KW - MACE KW - Colloidal lithography KW - PolyNIPAM KW - 6-Mercaptopurine Y1 - 2018 U6 - https://doi.org/10.1016/j.apsusc.2018.08.120 SN - 0169-4332 SN - 1873-5584 VL - 462 SP - 783 EP - 790 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Holland-Moritz, Henry A1 - Graupner, Julia A1 - Möller, Wolfhard A1 - Pacholski, Claudia A1 - Ronning, Carsten T1 - Dynamics of nanoparticle morphology under low energy ion irradiation JF - Nanotechnology N2 - If nanostructures are irradiated with energetic ions, the mechanism of sputtering becomes important when the ion range matches about the size of the nanoparticle. Gold nanoparticles with diameters of similar to 50 nm on top of silicon substrates with a native oxide layer were irradiated by gallium ions with energies ranging from 1 to 30 keV in a focused ion beam system. High resolution in situ scanning electron microscopy imaging permits detailed insights in the dynamics of the morphology change and sputter yield. Compared to bulk-like structures or thin films, a pronounced shaping and enhanced sputtering in the nanostructures occurs, which enables a specific shaping of these structures using ion beams. This effect depends on the ratio of nanoparticle size and ion energy. In the investigated energy regime, the sputter yield increases at increasing ion energy and shows a distinct dependence on the nanoparticle size. The experimental findings are directly compared to Monte Carlo simulations obtained from iradina and TRI3DYN, where the latter takes into account dynamic morphological and compositional changes of the target. KW - ion beam KW - nanoparticles KW - sputtering KW - Monte Carlo KW - in situ Y1 - 2018 U6 - https://doi.org/10.1088/1361-6528/aac36c SN - 0957-4484 SN - 1361-6528 VL - 29 IS - 31 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Stanglmair, Christoph A1 - Neubrech, Frank A1 - Pacholski, Claudia T1 - Chemical routes to surface enhanced infrared absorption (SEIRA) substrates JF - Zeitschrift für physikalische Chemie : international journal of research in physical chemistry and chemical physics N2 - Bottom-up strategies for fabricating SEIRA substrates are presented. For this purpose, wet-chemically prepared gold nanoparticles are coated with a polystyrene shell and subsequently self-assembled into different nanostructures such as quasi-hexagonally ordered gold nanoparticle monolayers, double layers, and honeycomb structures. Furthermore elongated gold nanostructures are obtained by sintering of gold nanoparticle double layers. The optical properties of these different gold nanostructures are directly connected to their morphology and geometrical arrangement - leading to surface plasmon resonances from the visible to the infrared wavelength range. Finally, SEIRA enhancement factors are determined. Gold nanoparticle double layers show the best performance as SEIRA substrates. KW - bottom-up KW - gold nanoparticles KW - self-assembly KW - surface enhanced spectroscopy Y1 - 2018 U6 - https://doi.org/10.1515/zpch-2018-1132 SN - 0942-9352 VL - 232 IS - 9-11 SP - 1527 EP - 1539 PB - De Gruyter CY - Berlin ER -