TY - JOUR A1 - Zivanovic, Vesna A1 - Kochovski, Zdravko A1 - Arenz, Christoph A1 - Lu, Yan A1 - Kneipp, Janina T1 - SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles JF - The journal of physical chemistry letters N2 - The combination of gold nanoparticles with liposomes is important for nano- and biotechnology. Here, we present direct, label-free characterization of liposome structure and composition at the site of its interaction with citrate-stabilized gold nanoparticles by surface-enhanced Raman scattering (SERS) and cryogenic electron microscopy (cryo-EM). Evidenced by the vibrational spectra and cryo-EM, the gold nanoparticles destroy the bilayer structure of interacting liposomes in the presence of a high amount of citrate, while at lower citrate concentration the nanoparticles interact with the surface of the intact liposomes. The spectra of phosphatidylcholine and phosphatidylcholine/sphingomyelin liposomes show that at the site of interaction the lipid chains are in the gel phase. The SERS spectra indicate that cholesterol has strong effects on the contacts of the vesicles with the nanoparticles. By combining cryo-EM and SERS, the structure and properties of lipid nanoparticle composites could be tailored for the development of drug delivery systems. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpclett.8b03191 SN - 1948-7185 VL - 9 IS - 23 SP - 6767 EP - 6772 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Qi, Wenjing A1 - Zhang, Yufei A1 - Kochovski, Zdravko A1 - Wang, Jue A1 - Lu, Yan A1 - Chen, Guosong A1 - Jiang, Ming T1 - Self-assembly of Human Galectin-1 via dual supramolecular interactions and its inhibition of T-cell agglutination and apoptosis JF - Nano Research N2 - Recently, we proposed a new strategy to construct artificial plant protein assemblies, which were induced by adding a small molecule, based on dual supramolecular interactions. In this paper, we further explored this method by employing Human Galectin-1 (Gal-1) as a building block to form self-assembled microribbons. Two non-covalent interactions, including lactose-lectin binding and dimerization of Rhodamine B (RhB), induced by the small molecule ligand addition, were involved in the crosslinking of the animal protein, resulting in the formation of assemblies. By using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and three-dimensional (3D) tomographic analysis, we arrived at a possible mechanistic model for the microribbon formation. Furthermore, the morphology of protein assemblies could be fine-timed by varying the incubation time, the protein/ligand ratio, and the chemical structures of ligands. Interestingly, the formation of protein microribbons successfully inhibited Gal-1 induced T-cell agglutination and apoptosis. This is because the multivalent and dynamic interactions in protein assemblies compete with the binding between Gal-1 and the glycans on cell surfaces, which suppresses the function of Gal-1 in promotion of tumor progression and metastasis. KW - protein self-assembly KW - supramolecular interactions KW - galectin KW - cell agglutination Y1 - 2018 U6 - https://doi.org/10.1007/s12274-018-2169-7 SN - 1998-0124 SN - 1998-0000 VL - 11 IS - 10 SP - 5566 EP - 5572 PB - Tsinghua Univ Press CY - Beijing ER - TY - JOUR A1 - Yang, Guang A1 - Hu, Rongting A1 - Ding, Hong-ming A1 - Kochovski, Zdravko A1 - Mei, Shilin A1 - Lu, Yan A1 - Ma, Yu-qiang A1 - Chen, Guosong A1 - Jiang, Ming T1 - CO2-switchable response of protein microtubules BT - behaviour and mechanism JF - Materials chemistry frontiers N2 - Recently, we proposed a small molecular inducing ligand strategy to assemble proteins into highly-ordered structures via dual non-covalent interactions, i.e. carbohydrate-protein interaction and dimerization of Rhodamine B. Using this approach, artificial protein microtubules were successfully constructed. In this study, we find that these microtubules exhibit a perfect CO2 responsiveness; assembly and disassembly of these microtubules were nicely controlled by the alternative passage of CO2 and N-2. Upon the injection of CO2, a negative net-charged SBA turns into a neutral or positive net-charged SBA, which elongated, to some extent, the effective distance between SBA and Rhodamine B, resulting in the disassociation of the Rhodamine B dimer. Further experimental and simulation results reveal that the CO2-responsive mechanism differs from that of solubility change of the previously reported CO2-responsive synthetic materials. Y1 - 2018 U6 - https://doi.org/10.1039/c8qm00245b SN - 2052-1537 VL - 2 IS - 9 SP - 1642 EP - 1646 PB - Royal Society of Chemistry CY - Cambridge ER -